Properties

Label 4-189728-1.1-c1e2-0-22
Degree $4$
Conductor $189728$
Sign $-1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·7-s + 8-s − 2·9-s − 2·14-s + 16-s − 2·18-s − 4·19-s − 10·25-s − 2·28-s + 32-s − 2·36-s + 4·37-s − 4·38-s − 16·43-s + 3·49-s − 10·50-s + 12·53-s − 2·56-s + 4·63-s + 64-s − 2·72-s + 4·74-s − 4·76-s − 16·79-s − 5·81-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s − 2/3·9-s − 0.534·14-s + 1/4·16-s − 0.471·18-s − 0.917·19-s − 2·25-s − 0.377·28-s + 0.176·32-s − 1/3·36-s + 0.657·37-s − 0.648·38-s − 2.43·43-s + 3/7·49-s − 1.41·50-s + 1.64·53-s − 0.267·56-s + 0.503·63-s + 1/8·64-s − 0.235·72-s + 0.464·74-s − 0.458·76-s − 1.80·79-s − 5/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
7$C_1$ \( ( 1 + T )^{2} \)
11$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.888226006934558931566258496787, −8.182643116839158569055135937831, −8.145906800879012290031802042193, −7.29668061464756137953129595214, −6.82397964191468499058519060303, −6.42455331216463290634831658204, −5.76321350617402115136418955935, −5.62168100149868099368912779374, −4.85990751466979898816213085515, −4.09052365620160024762211243831, −3.82418745638366191622617161116, −3.03039761753313177141617611476, −2.48514181668809031419660323366, −1.67120553980965395706477292535, 0, 1.67120553980965395706477292535, 2.48514181668809031419660323366, 3.03039761753313177141617611476, 3.82418745638366191622617161116, 4.09052365620160024762211243831, 4.85990751466979898816213085515, 5.62168100149868099368912779374, 5.76321350617402115136418955935, 6.42455331216463290634831658204, 6.82397964191468499058519060303, 7.29668061464756137953129595214, 8.145906800879012290031802042193, 8.182643116839158569055135937831, 8.888226006934558931566258496787

Graph of the $Z$-function along the critical line