Properties

Label 4-552e2-1.1-c1e2-0-6
Degree $4$
Conductor $304704$
Sign $1$
Analytic cond. $19.4281$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s − 4-s + 2·6-s − 3·8-s + 3·9-s − 2·12-s − 16-s + 3·18-s − 6·24-s + 6·25-s + 4·27-s + 5·32-s − 3·36-s + 12·41-s − 2·48-s + 2·49-s + 6·50-s + 4·54-s − 8·59-s + 7·64-s − 9·72-s + 12·73-s + 12·75-s + 5·81-s + 12·82-s + 10·96-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s − 1/2·4-s + 0.816·6-s − 1.06·8-s + 9-s − 0.577·12-s − 1/4·16-s + 0.707·18-s − 1.22·24-s + 6/5·25-s + 0.769·27-s + 0.883·32-s − 1/2·36-s + 1.87·41-s − 0.288·48-s + 2/7·49-s + 0.848·50-s + 0.544·54-s − 1.04·59-s + 7/8·64-s − 1.06·72-s + 1.40·73-s + 1.38·75-s + 5/9·81-s + 1.32·82-s + 1.02·96-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(19.4281\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 304704,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.247551087\)
\(L(\frac12)\) \(\approx\) \(3.247551087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
23$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.920790519114965671257010703910, −8.454348571562701433984302858901, −7.85392252500592886735780157959, −7.60397505367903767130862241085, −6.92478978405668928717286262994, −6.42863197942740220204602984579, −5.94699188325599470659884992821, −5.25903998055197925567753027283, −4.85154726517137833091566815759, −4.20883043135713897973718086472, −3.91624558429943130112244988038, −3.12205759743206158519825507723, −2.83074343481662872937191278964, −2.04919469679826535599177793432, −0.926306969570920423508871513209, 0.926306969570920423508871513209, 2.04919469679826535599177793432, 2.83074343481662872937191278964, 3.12205759743206158519825507723, 3.91624558429943130112244988038, 4.20883043135713897973718086472, 4.85154726517137833091566815759, 5.25903998055197925567753027283, 5.94699188325599470659884992821, 6.42863197942740220204602984579, 6.92478978405668928717286262994, 7.60397505367903767130862241085, 7.85392252500592886735780157959, 8.454348571562701433984302858901, 8.920790519114965671257010703910

Graph of the $Z$-function along the critical line