Properties

Label 4-312e2-1.1-c1e2-0-4
Degree $4$
Conductor $97344$
Sign $1$
Analytic cond. $6.20673$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 4·13-s + 6·17-s + 4·23-s + 8·25-s − 2·29-s + 12·43-s − 2·49-s + 2·53-s − 8·61-s + 8·79-s + 9·81-s − 6·101-s − 4·103-s − 4·107-s + 10·113-s + 12·117-s + 12·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 18·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 9-s − 1.10·13-s + 1.45·17-s + 0.834·23-s + 8/5·25-s − 0.371·29-s + 1.82·43-s − 2/7·49-s + 0.274·53-s − 1.02·61-s + 0.900·79-s + 81-s − 0.597·101-s − 0.394·103-s − 0.386·107-s + 0.940·113-s + 1.10·117-s + 1.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.45·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(6.20673\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 97344,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.359310864\)
\(L(\frac12)\) \(\approx\) \(1.359310864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 48 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 52 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.526004404431178876031710043647, −9.164352602874733233299723311120, −8.619911126044199085540764788205, −8.125918215506294645071474286457, −7.55388770150314928754095984897, −7.18330410569255458878422151340, −6.61942314254216046873127828148, −5.80803383582238864941480515497, −5.54991894915586879814361046912, −4.88664124590497733589586684613, −4.39987646534527496436176329610, −3.30614312674463841973957421169, −3.02121918077198931080455712253, −2.20439711277883076301974744262, −0.882561622700950431239185887106, 0.882561622700950431239185887106, 2.20439711277883076301974744262, 3.02121918077198931080455712253, 3.30614312674463841973957421169, 4.39987646534527496436176329610, 4.88664124590497733589586684613, 5.54991894915586879814361046912, 5.80803383582238864941480515497, 6.61942314254216046873127828148, 7.18330410569255458878422151340, 7.55388770150314928754095984897, 8.125918215506294645071474286457, 8.619911126044199085540764788205, 9.164352602874733233299723311120, 9.526004404431178876031710043647

Graph of the $Z$-function along the critical line