Properties

Label 4-228096-1.1-c1e2-0-16
Degree $4$
Conductor $228096$
Sign $-1$
Analytic cond. $14.5435$
Root an. cond. $1.95284$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s − 4·13-s − 2·25-s + 4·37-s − 12·47-s + 2·49-s − 12·59-s − 8·61-s + 12·71-s + 8·73-s − 24·83-s + 20·97-s − 24·107-s − 4·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 4·143-s + 149-s + 151-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + ⋯
L(s)  = 1  − 0.301·11-s − 1.10·13-s − 2/5·25-s + 0.657·37-s − 1.75·47-s + 2/7·49-s − 1.56·59-s − 1.02·61-s + 1.42·71-s + 0.936·73-s − 2.63·83-s + 2.03·97-s − 2.32·107-s − 0.383·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.334·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228096 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(228096\)    =    \(2^{8} \cdot 3^{4} \cdot 11\)
Sign: $-1$
Analytic conductor: \(14.5435\)
Root analytic conductor: \(1.95284\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 228096,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.807345076393523740681318457581, −8.139416913017356626675586613737, −7.891310604148507000420288056220, −7.39972862209619408557708443208, −6.89023231258483421701498318251, −6.35345838697891213151112205375, −5.89249753929319110592528751395, −5.19749819678856353657751060535, −4.85138848766425820147041612570, −4.27640933400723581471720241244, −3.57991199825676642367461401702, −2.88468470158735840317288696272, −2.32561571723694253137774509857, −1.43660124985736226405822631064, 0, 1.43660124985736226405822631064, 2.32561571723694253137774509857, 2.88468470158735840317288696272, 3.57991199825676642367461401702, 4.27640933400723581471720241244, 4.85138848766425820147041612570, 5.19749819678856353657751060535, 5.89249753929319110592528751395, 6.35345838697891213151112205375, 6.89023231258483421701498318251, 7.39972862209619408557708443208, 7.891310604148507000420288056220, 8.139416913017356626675586613737, 8.807345076393523740681318457581

Graph of the $Z$-function along the critical line