Properties

Label 4-1769472-1.1-c1e2-0-7
Degree $4$
Conductor $1769472$
Sign $1$
Analytic cond. $112.823$
Root an. cond. $3.25911$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 2·25-s − 27-s + 2·49-s + 24·59-s + 4·73-s + 2·75-s + 81-s − 4·97-s + 24·107-s − 22·121-s + 127-s + 131-s + 137-s + 139-s − 2·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 173-s − 24·177-s + 179-s + 181-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 2/5·25-s − 0.192·27-s + 2/7·49-s + 3.12·59-s + 0.468·73-s + 0.230·75-s + 1/9·81-s − 0.406·97-s + 2.32·107-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.164·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s − 1.80·177-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1769472\)    =    \(2^{16} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(112.823\)
Root analytic conductor: \(3.25911\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1769472,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.488316936\)
\(L(\frac12)\) \(\approx\) \(1.488316936\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74583868048918705583304639638, −7.33560649555241503748326163018, −6.94619456843931352166212388515, −6.57179677506898843905951095728, −6.05498608802269895216031943976, −5.66361373942718114697827466912, −5.27621961429003929477989927519, −4.78753583841009561813128674075, −4.31758645133063163767393127751, −3.74735906366057132239953766421, −3.42426092710094298655901904646, −2.54942324961895857431729956902, −2.15664370559519446720374886328, −1.33133794633126798828582037396, −0.55893394423636907455054582349, 0.55893394423636907455054582349, 1.33133794633126798828582037396, 2.15664370559519446720374886328, 2.54942324961895857431729956902, 3.42426092710094298655901904646, 3.74735906366057132239953766421, 4.31758645133063163767393127751, 4.78753583841009561813128674075, 5.27621961429003929477989927519, 5.66361373942718114697827466912, 6.05498608802269895216031943976, 6.57179677506898843905951095728, 6.94619456843931352166212388515, 7.33560649555241503748326163018, 7.74583868048918705583304639638

Graph of the $Z$-function along the critical line