Properties

Label 4-1331712-1.1-c1e2-0-14
Degree $4$
Conductor $1331712$
Sign $-1$
Analytic cond. $84.9111$
Root an. cond. $3.03557$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 4·17-s − 4·19-s − 4·25-s + 6·41-s + 8·43-s + 4·49-s − 16·59-s + 4·67-s − 2·73-s + 9·81-s + 16·83-s − 12·89-s − 10·97-s + 12·107-s − 34·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 9-s + 0.970·17-s − 0.917·19-s − 4/5·25-s + 0.937·41-s + 1.21·43-s + 4/7·49-s − 2.08·59-s + 0.488·67-s − 0.234·73-s + 81-s + 1.75·83-s − 1.27·89-s − 1.01·97-s + 1.16·107-s − 3.19·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1331712 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331712 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1331712\)    =    \(2^{9} \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(84.9111\)
Root analytic conductor: \(3.03557\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1331712,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
17$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 88 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 104 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 36 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80969052675559674658849574077, −7.50348002922080914301099211794, −6.82096588531160295340893232549, −6.38728238601446323303977603504, −5.90815019937903916251268104929, −5.70093967452316249670673962656, −5.14748089057394383625273640312, −4.62245869586976571746118685581, −4.00219381662282336387092715427, −3.69948601322286334271165578008, −2.91917459370557589198931145184, −2.58767256442731917452415918296, −1.89376397280654085668022817676, −1.03807622769668816576661394988, 0, 1.03807622769668816576661394988, 1.89376397280654085668022817676, 2.58767256442731917452415918296, 2.91917459370557589198931145184, 3.69948601322286334271165578008, 4.00219381662282336387092715427, 4.62245869586976571746118685581, 5.14748089057394383625273640312, 5.70093967452316249670673962656, 5.90815019937903916251268104929, 6.38728238601446323303977603504, 6.82096588531160295340893232549, 7.50348002922080914301099211794, 7.80969052675559674658849574077

Graph of the $Z$-function along the critical line