L(s) = 1 | − 3·9-s + 4·17-s − 4·19-s − 4·25-s + 6·41-s + 8·43-s + 4·49-s − 16·59-s + 4·67-s − 2·73-s + 9·81-s + 16·83-s − 12·89-s − 10·97-s + 12·107-s − 34·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 9-s + 0.970·17-s − 0.917·19-s − 4/5·25-s + 0.937·41-s + 1.21·43-s + 4/7·49-s − 2.08·59-s + 0.488·67-s − 0.234·73-s + 81-s + 1.75·83-s − 1.27·89-s − 1.01·97-s + 1.16·107-s − 3.19·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(1331712s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1331712s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1331712
= 29⋅32⋅172
|
Sign: |
−1
|
Analytic conductor: |
84.9111 |
Root analytic conductor: |
3.03557 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1331712, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 17 | C2 | 1−4T+pT2 |
good | 5 | C22 | 1+4T2+p2T4 |
| 7 | C22 | 1−4T2+p2T4 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 19 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 23 | C22 | 1+8T2+p2T4 |
| 29 | C22 | 1+44T2+p2T4 |
| 31 | C22 | 1+52T2+p2T4 |
| 37 | C22 | 1+56T2+p2T4 |
| 41 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1+34T2+p2T4 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 61 | C22 | 1−88T2+p2T4 |
| 67 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 71 | C22 | 1+104T2+p2T4 |
| 73 | C2×C2 | (1−10T+pT2)(1+12T+pT2) |
| 79 | C22 | 1+36T2+p2T4 |
| 83 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 89 | C2×C2 | (1+pT2)(1+12T+pT2) |
| 97 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80969052675559674658849574077, −7.50348002922080914301099211794, −6.82096588531160295340893232549, −6.38728238601446323303977603504, −5.90815019937903916251268104929, −5.70093967452316249670673962656, −5.14748089057394383625273640312, −4.62245869586976571746118685581, −4.00219381662282336387092715427, −3.69948601322286334271165578008, −2.91917459370557589198931145184, −2.58767256442731917452415918296, −1.89376397280654085668022817676, −1.03807622769668816576661394988, 0,
1.03807622769668816576661394988, 1.89376397280654085668022817676, 2.58767256442731917452415918296, 2.91917459370557589198931145184, 3.69948601322286334271165578008, 4.00219381662282336387092715427, 4.62245869586976571746118685581, 5.14748089057394383625273640312, 5.70093967452316249670673962656, 5.90815019937903916251268104929, 6.38728238601446323303977603504, 6.82096588531160295340893232549, 7.50348002922080914301099211794, 7.80969052675559674658849574077