Properties

Label 4-1246e2-1.1-c1e2-0-0
Degree $4$
Conductor $1552516$
Sign $1$
Analytic cond. $98.9897$
Root an. cond. $3.15426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 2·9-s + 5·16-s + 4·18-s + 16·23-s − 6·25-s − 6·32-s − 6·36-s − 4·43-s − 32·46-s − 7·49-s + 12·50-s + 12·53-s + 7·64-s − 16·67-s + 16·71-s + 8·72-s + 16·79-s − 5·81-s + 8·86-s + 48·92-s + 14·98-s − 18·100-s − 24·106-s + 16·107-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s − 2/3·9-s + 5/4·16-s + 0.942·18-s + 3.33·23-s − 6/5·25-s − 1.06·32-s − 36-s − 0.609·43-s − 4.71·46-s − 49-s + 1.69·50-s + 1.64·53-s + 7/8·64-s − 1.95·67-s + 1.89·71-s + 0.942·72-s + 1.80·79-s − 5/9·81-s + 0.862·86-s + 5.00·92-s + 1.41·98-s − 9/5·100-s − 2.33·106-s + 1.54·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1552516 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1552516 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1552516\)    =    \(2^{2} \cdot 7^{2} \cdot 89^{2}\)
Sign: $1$
Analytic conductor: \(98.9897\)
Root analytic conductor: \(3.15426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1552516,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9103095416\)
\(L(\frac12)\) \(\approx\) \(0.9103095416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7$C_2$ \( 1 + p T^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77948089534178376910067015471, −7.62278173895024006072090672250, −7.17734181742489309105923485780, −6.67854632460910561231510247828, −6.39157448299470323306279432463, −5.86058565685324849345856116979, −5.18755879988201558728632555274, −5.10345918500099198340016282816, −4.29555192736502971554821928846, −3.49313221834977534889859645155, −3.16476680941726517752422559781, −2.60554978310542183468446192843, −2.01056152480496856645260763012, −1.24613795354549553370877097103, −0.55881487121039629178406292495, 0.55881487121039629178406292495, 1.24613795354549553370877097103, 2.01056152480496856645260763012, 2.60554978310542183468446192843, 3.16476680941726517752422559781, 3.49313221834977534889859645155, 4.29555192736502971554821928846, 5.10345918500099198340016282816, 5.18755879988201558728632555274, 5.86058565685324849345856116979, 6.39157448299470323306279432463, 6.67854632460910561231510247828, 7.17734181742489309105923485780, 7.62278173895024006072090672250, 7.77948089534178376910067015471

Graph of the $Z$-function along the critical line