Properties

Label 4-758912-1.1-c1e2-0-36
Degree $4$
Conductor $758912$
Sign $-1$
Analytic cond. $48.3888$
Root an. cond. $2.63746$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 2·9-s + 16-s + 2·18-s + 8·23-s − 2·25-s + 8·29-s − 32-s − 2·36-s − 16·37-s − 8·46-s − 7·49-s + 2·50-s + 16·53-s − 8·58-s + 64-s − 24·71-s + 2·72-s + 16·74-s − 32·79-s − 5·81-s + 8·92-s + 7·98-s − 2·100-s − 16·106-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 2/3·9-s + 1/4·16-s + 0.471·18-s + 1.66·23-s − 2/5·25-s + 1.48·29-s − 0.176·32-s − 1/3·36-s − 2.63·37-s − 1.17·46-s − 49-s + 0.282·50-s + 2.19·53-s − 1.05·58-s + 1/8·64-s − 2.84·71-s + 0.235·72-s + 1.85·74-s − 3.60·79-s − 5/9·81-s + 0.834·92-s + 0.707·98-s − 1/5·100-s − 1.55·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 758912 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 758912 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(758912\)    =    \(2^{7} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(48.3888\)
Root analytic conductor: \(2.63746\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 758912,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_2$ \( 1 + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.312643462144221960724403117674, −7.39882727372647374248012947861, −7.28815113266216039232851219178, −6.91871579106931057797033104353, −6.27026212550748067984186009030, −5.88045142773096109817184061456, −5.35948295955480095458297786653, −4.89534372790661416769740588179, −4.36423285347045925412696055403, −3.59825789028225141662724729996, −3.01851490629752752797026746586, −2.71374431693977615462851425493, −1.80671257071984273314943130579, −1.12565693679380310126026867196, 0, 1.12565693679380310126026867196, 1.80671257071984273314943130579, 2.71374431693977615462851425493, 3.01851490629752752797026746586, 3.59825789028225141662724729996, 4.36423285347045925412696055403, 4.89534372790661416769740588179, 5.35948295955480095458297786653, 5.88045142773096109817184061456, 6.27026212550748067984186009030, 6.91871579106931057797033104353, 7.28815113266216039232851219178, 7.39882727372647374248012947861, 8.312643462144221960724403117674

Graph of the $Z$-function along the critical line