Properties

Label 4-935712-1.1-c1e2-0-29
Degree $4$
Conductor $935712$
Sign $-1$
Analytic cond. $59.6618$
Root an. cond. $2.77922$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 10·13-s + 16-s − 6·17-s − 10·25-s + 10·26-s − 18·29-s + 32-s − 6·34-s + 4·37-s − 13·49-s − 10·50-s + 10·52-s + 6·53-s − 18·58-s − 20·61-s + 64-s − 6·68-s − 14·73-s + 4·74-s + 24·89-s − 20·97-s − 13·98-s − 10·100-s − 36·101-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 2.77·13-s + 1/4·16-s − 1.45·17-s − 2·25-s + 1.96·26-s − 3.34·29-s + 0.176·32-s − 1.02·34-s + 0.657·37-s − 1.85·49-s − 1.41·50-s + 1.38·52-s + 0.824·53-s − 2.36·58-s − 2.56·61-s + 1/8·64-s − 0.727·68-s − 1.63·73-s + 0.464·74-s + 2.54·89-s − 2.03·97-s − 1.31·98-s − 100-s − 3.58·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 935712 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 935712 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(935712\)    =    \(2^{5} \cdot 3^{4} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(59.6618\)
Root analytic conductor: \(2.77922\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 935712,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87841813427368117647214734878, −7.53492665725128185091116505938, −6.98043076884761860510728876245, −6.40690082764165790518888770884, −6.02372043714400021098795022997, −5.85342474444132611353121181432, −5.38865185009354292107305454716, −4.54275466905147962254344391783, −4.18290710455057630899406360415, −3.59163897364434449988676374845, −3.56295849457415925614690839234, −2.60234956115962506172119076503, −1.70600515778630825145695828253, −1.59940757777111675726084768164, 0, 1.59940757777111675726084768164, 1.70600515778630825145695828253, 2.60234956115962506172119076503, 3.56295849457415925614690839234, 3.59163897364434449988676374845, 4.18290710455057630899406360415, 4.54275466905147962254344391783, 5.38865185009354292107305454716, 5.85342474444132611353121181432, 6.02372043714400021098795022997, 6.40690082764165790518888770884, 6.98043076884761860510728876245, 7.53492665725128185091116505938, 7.87841813427368117647214734878

Graph of the $Z$-function along the critical line