Properties

Label 4-260e2-1.1-c1e2-0-22
Degree $4$
Conductor $67600$
Sign $1$
Analytic cond. $4.31023$
Root an. cond. $1.44087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 4·5-s − 6·9-s + 8·10-s − 4·13-s − 4·16-s − 16·17-s + 12·18-s − 8·20-s + 11·25-s + 8·26-s − 8·29-s + 8·32-s + 32·34-s − 12·36-s − 10·37-s + 18·41-s + 24·45-s − 22·50-s − 8·52-s + 16·58-s − 20·61-s − 8·64-s + 16·65-s − 32·68-s + 22·73-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 1.78·5-s − 2·9-s + 2.52·10-s − 1.10·13-s − 16-s − 3.88·17-s + 2.82·18-s − 1.78·20-s + 11/5·25-s + 1.56·26-s − 1.48·29-s + 1.41·32-s + 5.48·34-s − 2·36-s − 1.64·37-s + 2.81·41-s + 3.57·45-s − 3.11·50-s − 1.10·52-s + 2.10·58-s − 2.56·61-s − 64-s + 1.98·65-s − 3.88·68-s + 2.57·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(67600\)    =    \(2^{4} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4.31023\)
Root analytic conductor: \(1.44087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 67600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + p^{2} T^{4} \)
11$C_2^2$ \( 1 + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + p^{2} T^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{2} T^{4} \)
71$C_2^2$ \( 1 + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41969885717196073800069890779, −11.09640815561493830712783322151, −10.94359038151489106072752521043, −10.68282862682245510106836463429, −9.490732212704087439628064325530, −9.173000378189406264853118695295, −8.796479618661795785853957972221, −8.565905979708743877436971470991, −7.75805147507824238498795753363, −7.72064250284630075532398206771, −6.82573504118796423410429596177, −6.69126558112912186218081072837, −5.74634980679457322559189331981, −4.82913331306829617973868572676, −4.44232462347619551420660772294, −3.74508564049840845926115165695, −2.65457487424769336016037753336, −2.25357395187725162810728799257, 0, 0, 2.25357395187725162810728799257, 2.65457487424769336016037753336, 3.74508564049840845926115165695, 4.44232462347619551420660772294, 4.82913331306829617973868572676, 5.74634980679457322559189331981, 6.69126558112912186218081072837, 6.82573504118796423410429596177, 7.72064250284630075532398206771, 7.75805147507824238498795753363, 8.565905979708743877436971470991, 8.796479618661795785853957972221, 9.173000378189406264853118695295, 9.490732212704087439628064325530, 10.68282862682245510106836463429, 10.94359038151489106072752521043, 11.09640815561493830712783322151, 11.41969885717196073800069890779

Graph of the $Z$-function along the critical line