Properties

Label 4-8379-1.1-c1e2-0-1
Degree $4$
Conductor $8379$
Sign $-1$
Analytic cond. $0.534252$
Root an. cond. $0.854941$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 3·7-s − 2·9-s + 2·12-s − 4·13-s + 3·21-s − 25-s + 5·27-s + 6·28-s − 9·31-s + 4·36-s + 3·37-s + 4·39-s − 2·43-s + 2·49-s + 8·52-s + 14·61-s + 6·63-s + 8·64-s + 7·67-s − 5·73-s + 75-s − 13·79-s + 81-s − 6·84-s + 12·91-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 1.13·7-s − 2/3·9-s + 0.577·12-s − 1.10·13-s + 0.654·21-s − 1/5·25-s + 0.962·27-s + 1.13·28-s − 1.61·31-s + 2/3·36-s + 0.493·37-s + 0.640·39-s − 0.304·43-s + 2/7·49-s + 1.10·52-s + 1.79·61-s + 0.755·63-s + 64-s + 0.855·67-s − 0.585·73-s + 0.115·75-s − 1.46·79-s + 1/9·81-s − 0.654·84-s + 1.25·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(0.534252\)
Root analytic conductor: \(0.854941\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 8379,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + p T^{2} \)
7$C_2$ \( 1 + 3 T + p T^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - T + p T^{2} ) \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 - T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 83 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 97 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 83 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44143512570500340082196557809, −10.91781731857307716314603794114, −10.12524466987510967656593114869, −9.695234107713111107390157126114, −9.248006964914772692335807990868, −8.660966236514361236858631650573, −7.994769985244196073328035137928, −7.08328881839961312359819628366, −6.64271894833807211348509290342, −5.68680949131679008995515836152, −5.30891567797866767032422615638, −4.44698021248356841723306301485, −3.60724543959152583930898114695, −2.58257775926797291772517437762, 0, 2.58257775926797291772517437762, 3.60724543959152583930898114695, 4.44698021248356841723306301485, 5.30891567797866767032422615638, 5.68680949131679008995515836152, 6.64271894833807211348509290342, 7.08328881839961312359819628366, 7.994769985244196073328035137928, 8.660966236514361236858631650573, 9.248006964914772692335807990868, 9.695234107713111107390157126114, 10.12524466987510967656593114869, 10.91781731857307716314603794114, 11.44143512570500340082196557809

Graph of the $Z$-function along the critical line