Properties

Label 4-623808-1.1-c1e2-0-36
Degree $4$
Conductor $623808$
Sign $-1$
Analytic cond. $39.7745$
Root an. cond. $2.51131$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s − 12·13-s − 2·19-s + 2·21-s + 6·25-s − 27-s + 6·31-s + 14·37-s + 12·39-s + 8·43-s − 2·49-s + 2·57-s + 12·61-s − 2·63-s − 2·67-s − 4·73-s − 6·75-s + 81-s + 24·91-s − 6·93-s − 12·97-s − 24·103-s − 16·109-s − 14·111-s − 12·117-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s − 3.32·13-s − 0.458·19-s + 0.436·21-s + 6/5·25-s − 0.192·27-s + 1.07·31-s + 2.30·37-s + 1.92·39-s + 1.21·43-s − 2/7·49-s + 0.264·57-s + 1.53·61-s − 0.251·63-s − 0.244·67-s − 0.468·73-s − 0.692·75-s + 1/9·81-s + 2.51·91-s − 0.622·93-s − 1.21·97-s − 2.36·103-s − 1.53·109-s − 1.32·111-s − 1.10·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(623808\)    =    \(2^{6} \cdot 3^{3} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(39.7745\)
Root analytic conductor: \(2.51131\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 623808,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
19$C_2$ \( 1 + 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.031563942299162424041628843957, −7.63005705191795993983150082651, −7.21765743945199396325053287313, −6.69429743165646204191393746321, −6.60346364403284777452294576360, −5.74392577775493010279202459250, −5.47440673874821352532600321179, −4.73172476280743272790901464842, −4.57854700039207025851930473702, −4.06779230624302542715181771391, −3.02216390230599701572405821495, −2.62923448155770957999371438518, −2.25799243747642170485814685577, −0.934860212622062306194890180329, 0, 0.934860212622062306194890180329, 2.25799243747642170485814685577, 2.62923448155770957999371438518, 3.02216390230599701572405821495, 4.06779230624302542715181771391, 4.57854700039207025851930473702, 4.73172476280743272790901464842, 5.47440673874821352532600321179, 5.74392577775493010279202459250, 6.60346364403284777452294576360, 6.69429743165646204191393746321, 7.21765743945199396325053287313, 7.63005705191795993983150082651, 8.031563942299162424041628843957

Graph of the $Z$-function along the critical line