Properties

Label 4-585e2-1.1-c1e2-0-26
Degree $4$
Conductor $342225$
Sign $-1$
Analytic cond. $21.8205$
Root an. cond. $2.16130$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·13-s − 3·16-s + 25-s − 8·31-s + 4·37-s − 10·49-s − 2·52-s − 12·61-s − 7·64-s − 8·67-s − 4·73-s − 16·79-s − 4·97-s + 100-s − 8·103-s + 12·109-s + 10·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 4·148-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.554·13-s − 3/4·16-s + 1/5·25-s − 1.43·31-s + 0.657·37-s − 1.42·49-s − 0.277·52-s − 1.53·61-s − 7/8·64-s − 0.977·67-s − 0.468·73-s − 1.80·79-s − 0.406·97-s + 1/10·100-s − 0.788·103-s + 1.14·109-s + 0.909·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.328·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 342225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 342225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(342225\)    =    \(3^{4} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(21.8205\)
Root analytic conductor: \(2.16130\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 342225,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$ \( ( 1 + T )^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.586167524273127109025637919098, −7.964739217835558664032960662696, −7.46728862926630623201493867144, −7.22532339209785524309518881889, −6.67067715187431506355624848497, −6.18442823511588326637929893197, −5.73056471146513146878035825057, −5.13670257649801654424344526907, −4.55328363164642304319086054310, −4.18471191300724743757003683414, −3.29040309023981160399048120423, −2.87017096304548857061977088092, −2.11005368985475829882968048669, −1.48034033501363092040574115276, 0, 1.48034033501363092040574115276, 2.11005368985475829882968048669, 2.87017096304548857061977088092, 3.29040309023981160399048120423, 4.18471191300724743757003683414, 4.55328363164642304319086054310, 5.13670257649801654424344526907, 5.73056471146513146878035825057, 6.18442823511588326637929893197, 6.67067715187431506355624848497, 7.22532339209785524309518881889, 7.46728862926630623201493867144, 7.964739217835558664032960662696, 8.586167524273127109025637919098

Graph of the $Z$-function along the critical line