Properties

Label 4-129e2-1.1-c1e2-0-3
Degree $4$
Conductor $16641$
Sign $1$
Analytic cond. $1.06104$
Root an. cond. $1.01492$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4·4-s − 9·7-s + 6·9-s + 12·12-s − 7·13-s + 12·16-s − 6·19-s + 27·21-s + 5·25-s − 9·27-s + 36·28-s − 7·31-s − 24·36-s − 9·37-s + 21·39-s − 8·43-s − 36·48-s + 47·49-s + 28·52-s + 18·57-s − 12·61-s − 54·63-s − 32·64-s + 5·67-s − 27·73-s − 15·75-s + ⋯
L(s)  = 1  − 1.73·3-s − 2·4-s − 3.40·7-s + 2·9-s + 3.46·12-s − 1.94·13-s + 3·16-s − 1.37·19-s + 5.89·21-s + 25-s − 1.73·27-s + 6.80·28-s − 1.25·31-s − 4·36-s − 1.47·37-s + 3.36·39-s − 1.21·43-s − 5.19·48-s + 47/7·49-s + 3.88·52-s + 2.38·57-s − 1.53·61-s − 6.80·63-s − 4·64-s + 0.610·67-s − 3.16·73-s − 1.73·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16641 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16641 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16641\)    =    \(3^{2} \cdot 43^{2}\)
Sign: $1$
Analytic conductor: \(1.06104\)
Root analytic conductor: \(1.01492\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 16641,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T + p T^{2} \)
43$C_2$ \( 1 + 8 T + p T^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80543620150534401636915604552, −12.77059704863911707217640644848, −12.23614595780406933556606832717, −12.00321542250815881352977853256, −10.55490355283231007832515842370, −10.47486865891372303677502943847, −9.806502953952050504656481984844, −9.726773278695380431056419435563, −9.065248595650768776568045985041, −8.633915169686977569657784958178, −7.18655804081985587007586576971, −7.10683630188130986197507329790, −6.19386230426811351510762397112, −5.90043185219449490102402378679, −5.08935041145173611379631339493, −4.59892215297977124356818671545, −3.76827330031665716512726383843, −3.09116692298886609499007591441, 0, 0, 3.09116692298886609499007591441, 3.76827330031665716512726383843, 4.59892215297977124356818671545, 5.08935041145173611379631339493, 5.90043185219449490102402378679, 6.19386230426811351510762397112, 7.10683630188130986197507329790, 7.18655804081985587007586576971, 8.633915169686977569657784958178, 9.065248595650768776568045985041, 9.726773278695380431056419435563, 9.806502953952050504656481984844, 10.47486865891372303677502943847, 10.55490355283231007832515842370, 12.00321542250815881352977853256, 12.23614595780406933556606832717, 12.77059704863911707217640644848, 12.80543620150534401636915604552

Graph of the $Z$-function along the critical line