Properties

Label 4-165564-1.1-c1e2-0-2
Degree $4$
Conductor $165564$
Sign $-1$
Analytic cond. $10.5565$
Root an. cond. $1.80251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 7-s + 4·13-s + 16-s − 9·19-s − 6·25-s − 28-s − 16·31-s + 2·37-s + 3·43-s − 6·49-s − 4·52-s − 7·61-s − 64-s − 12·67-s − 14·73-s + 9·76-s + 4·91-s − 15·97-s + 6·100-s + 34·103-s + 28·109-s + 112-s + 121-s + 16·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 0.377·7-s + 1.10·13-s + 1/4·16-s − 2.06·19-s − 6/5·25-s − 0.188·28-s − 2.87·31-s + 0.328·37-s + 0.457·43-s − 6/7·49-s − 0.554·52-s − 0.896·61-s − 1/8·64-s − 1.46·67-s − 1.63·73-s + 1.03·76-s + 0.419·91-s − 1.52·97-s + 3/5·100-s + 3.35·103-s + 2.68·109-s + 0.0944·112-s + 1/11·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165564 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165564 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(165564\)    =    \(2^{2} \cdot 3^{4} \cdot 7 \cdot 73\)
Sign: $-1$
Analytic conductor: \(10.5565\)
Root analytic conductor: \(1.80251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 165564,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
7$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + p T^{2} ) \)
73$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 13 T + p T^{2} ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - T + p T^{2} ) \)
17$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 41 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 136 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 104 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.830848494037951807101019661739, −8.720417440619100335970991907979, −8.062387213693486305946561160968, −7.55227181161853856703885648199, −7.19405103428111507643226937689, −6.30870657845361576381140527985, −6.01435376106891931503404507132, −5.60393979966852728518119703099, −4.78800566470201649955945266904, −4.29868099228912376084565120405, −3.81327193351115246312146514208, −3.24505475327997688747257426289, −2.11758128973097040807198938312, −1.59139990733728620447570002364, 0, 1.59139990733728620447570002364, 2.11758128973097040807198938312, 3.24505475327997688747257426289, 3.81327193351115246312146514208, 4.29868099228912376084565120405, 4.78800566470201649955945266904, 5.60393979966852728518119703099, 6.01435376106891931503404507132, 6.30870657845361576381140527985, 7.19405103428111507643226937689, 7.55227181161853856703885648199, 8.062387213693486305946561160968, 8.720417440619100335970991907979, 8.830848494037951807101019661739

Graph of the $Z$-function along the critical line