Properties

Degree $1$
Conductor $83$
Sign $-0.917 + 0.398i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.720 + 0.693i)2-s + (0.190 + 0.981i)3-s + (0.0383 − 0.999i)4-s + (0.264 + 0.964i)5-s + (−0.817 − 0.575i)6-s + (0.988 + 0.152i)7-s + (0.665 + 0.746i)8-s + (−0.927 + 0.373i)9-s + (−0.859 − 0.511i)10-s + (0.896 + 0.443i)11-s + (0.988 − 0.152i)12-s + (0.771 + 0.636i)13-s + (−0.817 + 0.575i)14-s + (−0.896 + 0.443i)15-s + (−0.997 − 0.0765i)16-s + (0.477 + 0.878i)17-s + ⋯
L(s,χ)  = 1  + (−0.720 + 0.693i)2-s + (0.190 + 0.981i)3-s + (0.0383 − 0.999i)4-s + (0.264 + 0.964i)5-s + (−0.817 − 0.575i)6-s + (0.988 + 0.152i)7-s + (0.665 + 0.746i)8-s + (−0.927 + 0.373i)9-s + (−0.859 − 0.511i)10-s + (0.896 + 0.443i)11-s + (0.988 − 0.152i)12-s + (0.771 + 0.636i)13-s + (−0.817 + 0.575i)14-s + (−0.896 + 0.443i)15-s + (−0.997 − 0.0765i)16-s + (0.477 + 0.878i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.917 + 0.398i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 83 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.917 + 0.398i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(83\)
Sign: $-0.917 + 0.398i$
Motivic weight: \(0\)
Character: $\chi_{83} (80, \cdot )$
Sato-Tate group: $\mu(82)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 83,\ (1:\ ),\ -0.917 + 0.398i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.2859344506 + 1.376320621i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.2859344506 + 1.376320621i\)
\(L(\chi,1)\) \(\approx\) \(0.6557267517 + 0.7355202488i\)
\(L(1,\chi)\) \(\approx\) \(0.6557267517 + 0.7355202488i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−29.816502653071470564536760138509, −29.37993112475318600322960547882, −27.89791038738443284906132914414, −27.44219451345237254524444453302, −25.74011194530799927793114418415, −24.918061484501364431915262935342, −24.069146342605756204614341632264, −22.56927779452396031881430499650, −20.90028203465136466344998496031, −20.45467997455804031374334171844, −19.27565732569411954023999352886, −18.13760115149078027116112119327, −17.36832741810317980412294413306, −16.33627381525352000276474216451, −14.20850276595069394501164987569, −13.19494695831424417284988483679, −12.0621126531550075287737407945, −11.23206034673879110579627315224, −9.42723574291964363364215275801, −8.39164755363132457154942925886, −7.56437116984798145358578354480, −5.67432627902738515414659905240, −3.68339661287817208966461569886, −1.76159914906164494965284549698, −0.91411569517785315248774745329, 1.953779300765316683970829727888, 4.06576333104402680917694378844, 5.577965554891443489808384628152, 6.88506810264579936089376270189, 8.38629502625052400767558106065, 9.39478133638089856666968393128, 10.626011887760212335827231834, 11.36981897488835710665086496738, 14.12279343838083839134728606044, 14.62339045966411681296951387084, 15.58190148102541277872178079820, 16.91404887100648969930698453290, 17.78787777438188987067350832997, 18.949044696913181936548743415703, 20.17874090118287567641210402613, 21.42385553148890427944527637080, 22.48133674289628287678331642103, 23.68832727746851223497265517960, 25.03257129641972164176827232714, 26.04157321816436897650573947653, 26.633954532586687431512885365828, 27.812911358699719686113339849455, 28.3299660287791781506143433458, 30.11366761857663233951419550199, 31.09932156476368818786931233065

Graph of the $Z$-function along the critical line