Properties

Degree 1
Conductor $ 7^{2} $
Sign $0.127 + 0.991i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.733 + 0.680i)2-s + (0.988 − 0.149i)3-s + (0.0747 − 0.997i)4-s + (−0.365 + 0.930i)5-s + (−0.623 + 0.781i)6-s + (0.623 + 0.781i)8-s + (0.955 − 0.294i)9-s + (−0.365 − 0.930i)10-s + (0.955 + 0.294i)11-s + (−0.0747 − 0.997i)12-s + (0.222 + 0.974i)13-s + (−0.222 + 0.974i)15-s + (−0.988 − 0.149i)16-s + (−0.826 + 0.563i)17-s + (−0.5 + 0.866i)18-s + (0.5 + 0.866i)19-s + ⋯
L(s,χ)  = 1  + (−0.733 + 0.680i)2-s + (0.988 − 0.149i)3-s + (0.0747 − 0.997i)4-s + (−0.365 + 0.930i)5-s + (−0.623 + 0.781i)6-s + (0.623 + 0.781i)8-s + (0.955 − 0.294i)9-s + (−0.365 − 0.930i)10-s + (0.955 + 0.294i)11-s + (−0.0747 − 0.997i)12-s + (0.222 + 0.974i)13-s + (−0.222 + 0.974i)15-s + (−0.988 − 0.149i)16-s + (−0.826 + 0.563i)17-s + (−0.5 + 0.866i)18-s + (0.5 + 0.866i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.127 + 0.991i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 49 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.127 + 0.991i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(49\)    =    \(7^{2}\)
\( \varepsilon \)  =  $0.127 + 0.991i$
motivic weight  =  \(0\)
character  :  $\chi_{49} (33, \cdot )$
Sato-Tate  :  $\mu(42)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 49,\ (1:\ ),\ 0.127 + 0.991i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(1.068671029 + 0.9397275615i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(1.068671029 + 0.9397275615i\)
\(L(\chi,1)\)  \(\approx\)  \(0.9583339522 + 0.4611601525i\)
\(L(1,\chi)\)  \(\approx\)  \(0.9583339522 + 0.4611601525i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−32.97724441447080788354457695068, −31.95056537726300491188541437290, −30.87731471067510578528788982371, −29.933967999417902977318832158687, −28.49929643867283542601538567876, −27.42662320056560321661079601373, −26.67373548203036622360327919406, −25.209179746787339278124659786123, −24.511827715360102391509015471516, −22.37762932995809813064430935661, −21.04573532001405216359050198709, −20.078388782986246820207569064248, −19.51202192824979512123113039027, −18.00078902259586369728517784594, −16.57098243974708675414928949476, −15.43699245305702118380837213155, −13.56249502948809405078576557439, −12.51035253272093663354925120561, −11.00661021895721093999119707588, −9.3083903911732875575822287674, −8.68265276177954400082469776803, −7.34413238685977309801260308167, −4.442730142130269454535856856115, −3.004126893189794793638884791447, −1.08429970573353567979478609315, 1.87588640103161486310635060704, 3.93972925775712889760018875837, 6.48476961657871025558655003307, 7.4329222582039695035891962992, 8.79121891288189077374272955840, 9.93066799689361098357880952263, 11.498618796693628038571943231180, 13.73842375709841462780750706705, 14.71858862938459726337494978965, 15.56283504405165589493314370014, 17.17148951518147306663503171936, 18.67158767785496299037124527744, 19.227663909906532571154922090250, 20.4531728858376616208254639101, 22.25663428991473139677028461202, 23.68382088522433418680153932439, 24.80543345502714281373314346802, 25.87406034926536454134944033128, 26.64893427243697368346363118817, 27.57175495863451255755118290810, 29.20412442214439549263913657725, 30.52784512813408811523082229005, 31.50631392159398751874426341013, 32.93634403592937280749210100503, 33.74120653860952480037794741154

Graph of the $Z$-function along the critical line