Properties

Degree 1
Conductor 37
Sign $0.568 - 0.822i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.939 − 0.342i)2-s + (−0.939 − 0.342i)3-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)5-s − 6-s + (0.173 + 0.984i)7-s + (0.5 − 0.866i)8-s + (0.766 + 0.642i)9-s + (−0.5 − 0.866i)10-s + (−0.5 + 0.866i)11-s + (−0.939 + 0.342i)12-s + (−0.766 + 0.642i)13-s + (0.5 + 0.866i)14-s + (−0.173 + 0.984i)15-s + (0.173 − 0.984i)16-s + (−0.766 − 0.642i)17-s + ⋯
L(s,χ)  = 1  + (0.939 − 0.342i)2-s + (−0.939 − 0.342i)3-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)5-s − 6-s + (0.173 + 0.984i)7-s + (0.5 − 0.866i)8-s + (0.766 + 0.642i)9-s + (−0.5 − 0.866i)10-s + (−0.5 + 0.866i)11-s + (−0.939 + 0.342i)12-s + (−0.766 + 0.642i)13-s + (0.5 + 0.866i)14-s + (−0.173 + 0.984i)15-s + (0.173 − 0.984i)16-s + (−0.766 − 0.642i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.568 - 0.822i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.568 - 0.822i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(37\)
\( \varepsilon \)  =  $0.568 - 0.822i$
motivic weight  =  \(0\)
character  :  $\chi_{37} (28, \cdot )$
Sato-Tate  :  $\mu(18)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 37,\ (0:\ ),\ 0.568 - 0.822i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.8787372549 - 0.4609045959i$
$L(\frac12,\chi)$  $\approx$  $0.8787372549 - 0.4609045959i$
$L(\chi,1)$  $\approx$  1.123598560 - 0.4089115837i
$L(1,\chi)$  $\approx$  1.123598560 - 0.4089115837i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−35.03640964536295017950215913062, −34.48632407436252154728660299180, −33.3428788792064425021617968129, −32.58786169063507319100818184731, −30.95705419702737356231933349234, −29.82167505940103525155116089043, −29.07012487597618402823945668348, −26.98124076013339523776655747498, −26.34920792999732410862567890408, −24.36206537637199701703469389449, −23.40743942802893249467568705314, −22.409853239583000512791445170574, −21.58055241285770017388429251539, −20.00733320929104349784169392858, −18.00784423375032171794680210689, −16.78083004521403710349852557628, −15.579904108370806517940057977361, −14.34087446506882071022690815016, −12.877992775421300087163502437316, −11.228561564707156485106023410437, −10.53716313896090848901234463595, −7.53876337199953804478046197912, −6.383182436488355326640329945177, −4.85286808562406388641169668955, −3.291691085377348818839383657, 1.96857853701371214787576443373, 4.68474676720624471414784284610, 5.501891530333362684809077623007, 7.277734240068670771393366488251, 9.638216025683352254015712285, 11.57373458813657268850334328110, 12.23047145217656675123557078187, 13.35399475243116855563969228195, 15.30165804662761050999996213147, 16.3557325439038188784050319832, 17.97359029256949552537345940906, 19.48281641865946430642242282296, 20.916164729151314949238860838387, 22.01318600425391518407037624594, 23.17401530952307696889276063649, 24.29879934126055003253141698307, 24.99386624508049543001698290375, 27.55906517346149933677361928642, 28.679421662204383218571231541953, 29.11222522549157177830835037960, 30.92262042465504229963397300848, 31.573185365058292407100605050915, 33.106563757499984006956352327443, 34.00578011127509228956629443688, 35.25935615800503360856869541956

Graph of the $Z$-function along the critical line