| L(s) = 1 | + (0.866 − 0.5i)2-s − i·3-s + (0.5 − 0.866i)4-s + (−0.5 − 0.866i)6-s + (−0.866 − 0.5i)7-s − i·8-s − 9-s + (−0.5 + 0.866i)11-s + (−0.866 − 0.5i)12-s + (−0.866 + 0.5i)13-s − 14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (−0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (0.866 − 0.5i)2-s − i·3-s + (0.5 − 0.866i)4-s + (−0.5 − 0.866i)6-s + (−0.866 − 0.5i)7-s − i·8-s − 9-s + (−0.5 + 0.866i)11-s + (−0.866 − 0.5i)12-s + (−0.866 + 0.5i)13-s − 14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (−0.866 + 0.5i)18-s + (0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 335 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0734 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 335 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0734 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2655222892 - 0.2466935938i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.2655222892 - 0.2466935938i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8849387179 - 0.7535796206i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8849387179 - 0.7535796206i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 67 | \( 1 \) |
| good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.56981769888083918222637800886, −24.46651837930200783421093530943, −23.59785708161618980454165794503, −22.52508277575010295132071580155, −21.98648649861181945909294657681, −21.41018040267404481104360203734, −20.310709997612724586608618547312, −19.52153015862714136679686711698, −18.11020491310400073400263102291, −16.83769794020971017666355974663, −16.2965889667782229439995079838, −15.4912134285599297421363941926, −14.76018537898337759554783234321, −13.794884923413573225200457447901, −12.75112032380540070746453901921, −11.874527376011801554967882432098, −10.77301830321228031332831843123, −9.75547907367985784290358912050, −8.64291252557706802239383350020, −7.64083191218538936367154122837, −6.167106264252945826882643872407, −5.53617156959429585990970609281, −4.531176776777206551938274264480, −3.24530356915403101645429090085, −2.749336734751660548988219587854,
0.0711862343390026995497202466, 1.505367747095589922789543812924, 2.57966463683747258314383099694, 3.617933978032444516260658705858, 4.98649796443086901354659030119, 6.03149007222235529849705799108, 7.02910178885119893921208106815, 7.72262614606043706159124918321, 9.61171970775244655838946342257, 10.1953117016582381238648419702, 11.67864980495089469799662378267, 12.27973952805117041374998622648, 13.031880713612882600486776764667, 13.94335409281064011612519767471, 14.59426987018378213822087411673, 15.90388898233541928695153389866, 16.82421256100995100248240185361, 18.107001872885592922790114697860, 18.9305401882367284494166156579, 19.80167004840048320077677053300, 20.31619009413813843357821709587, 21.49634501441244959440834019015, 22.59916935280043199697741011767, 23.197085948600545302917955957375, 23.77126422066700245119325547211