| L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.5 − 0.866i)4-s + (−0.5 + 0.866i)6-s + (0.5 + 0.866i)7-s − 8-s + 9-s + (−0.5 − 0.866i)11-s + (0.5 + 0.866i)12-s + (0.5 − 0.866i)13-s + 14-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)18-s + (−0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.5 − 0.866i)4-s + (−0.5 + 0.866i)6-s + (0.5 + 0.866i)7-s − 8-s + 9-s + (−0.5 − 0.866i)11-s + (0.5 + 0.866i)12-s + (0.5 − 0.866i)13-s + 14-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)18-s + (−0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 335 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.809 - 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 335 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.809 - 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2970803573 - 0.9162810220i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2970803573 - 0.9162810220i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7368698712 - 0.5683838906i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7368698712 - 0.5683838906i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 67 | \( 1 \) |
| good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.31862357068259773779137335178, −23.94855398997178378088359062623, −23.579718211918901690489916174425, −23.13974285527416239647612904183, −21.80562795415004848691486356432, −21.37492466407627693577867828844, −20.23668381288107672515677517300, −18.70836808379983018236816452736, −17.8236651922378973791126746525, −17.11552831141999877923285518995, −16.4964335559209303905125264031, −15.4523232413535673030423117958, −14.64166030571179111234510198983, −13.42381299245178008883274373370, −12.79980299430705512497875479835, −11.673103088653062550885278501112, −10.79271417313082336382386542524, −9.63780004382379247432745798827, −8.26298914273329610212873813390, −7.15187141064485138496149376409, −6.63677585476882892149378102398, −5.30410867273772023356923583808, −4.62278179832221924200781549547, −3.645645606678142204769206958815, −1.54351222565612383330001864217,
0.61585183003662569652294307393, 2.05516711100145287309924262935, 3.32155572695209282091632581438, 4.63322076426090065199731999544, 5.623959400891515355085200290011, 6.04051543848089361859872922932, 7.841205855725252648593658792007, 9.04207141412252385716914470086, 10.251520217157926826432718337805, 10.99913147156067151931829289850, 11.74015006968451766536213192107, 12.59978297593158956365366099097, 13.37764586392407899358813247823, 14.63265201891929198803726891407, 15.519580758086080144458507568648, 16.50867952155482529107486654401, 17.76865608222146910536193598969, 18.60150281161746451736966910304, 18.93140413692123504485740203564, 20.70184315818041766324571600007, 21.007345250756131987825726444, 22.065417074517519774280313098347, 22.68822922667450849823559857327, 23.51548109170106392455293104537, 24.36842074275757835587182578972