Properties

Label 1-2297-2297.2296-r0-0-0
Degree $1$
Conductor $2297$
Sign $1$
Analytic cond. $10.6672$
Root an. cond. $10.6672$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s + 11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 19-s − 20-s − 21-s + 22-s − 23-s − 24-s + 25-s + 26-s − 27-s + 28-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s + 11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 19-s − 20-s − 21-s + 22-s − 23-s − 24-s + 25-s + 26-s − 27-s + 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2297 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2297 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2297\)
Sign: $1$
Analytic conductor: \(10.6672\)
Root analytic conductor: \(10.6672\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2297} (2296, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 2297,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.907150292\)
\(L(\frac12)\) \(\approx\) \(2.907150292\)
\(L(1)\) \(\approx\) \(1.724246099\)
\(L(1)\) \(\approx\) \(1.724246099\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2297 \( 1 \)
good2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 - T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.002005319827275951452769483741, −18.84744257027808272409482621439, −18.238063897241178150680377815196, −17.362386121721264092457635189468, −16.42429271247478426385713803905, −16.14322415869036547134276018195, −15.34754707981643867138605187838, −14.506750200548341059925796259274, −14.02930035812992146137375765231, −12.95147442269205472275723453411, −12.11483713102594964208000526484, −11.7518145865128443338545153560, −11.21017330788259243635886127520, −10.598078748853392339511928535048, −9.52375123989722020108401589744, −8.14040010934318630547646692816, −7.6804059934607834080082800054, −6.78737554239312629688991263936, −6.0400232018998451039994492064, −5.29927794027987049006107849417, −4.48312018307902735606858875143, −3.9421266224076096638377510354, −3.15878150836863965265489117222, −1.57381857921262384380974836690, −1.08575860944583528884274541488, 1.08575860944583528884274541488, 1.57381857921262384380974836690, 3.15878150836863965265489117222, 3.9421266224076096638377510354, 4.48312018307902735606858875143, 5.29927794027987049006107849417, 6.0400232018998451039994492064, 6.78737554239312629688991263936, 7.6804059934607834080082800054, 8.14040010934318630547646692816, 9.52375123989722020108401589744, 10.598078748853392339511928535048, 11.21017330788259243635886127520, 11.7518145865128443338545153560, 12.11483713102594964208000526484, 12.95147442269205472275723453411, 14.02930035812992146137375765231, 14.506750200548341059925796259274, 15.34754707981643867138605187838, 16.14322415869036547134276018195, 16.42429271247478426385713803905, 17.362386121721264092457635189468, 18.238063897241178150680377815196, 18.84744257027808272409482621439, 20.002005319827275951452769483741

Graph of the $Z$-function along the critical line