Properties

Label 2-1519-31.30-c0-0-1
Degree $2$
Conductor $1519$
Sign $1$
Analytic cond. $0.758079$
Root an. cond. $0.870677$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.347·2-s − 0.879·4-s − 1.87·5-s − 0.652·8-s + 9-s − 0.652·10-s + 0.652·16-s + 0.347·18-s + 1.53·19-s + 1.65·20-s + 2.53·25-s + 31-s + 0.879·32-s − 0.879·36-s + 0.532·38-s + 1.22·40-s + 0.347·41-s − 1.87·45-s − 47-s + 0.879·50-s + 0.347·59-s + 0.347·62-s − 0.347·64-s − 67-s + 1.53·71-s − 0.652·72-s − 1.34·76-s + ⋯
L(s)  = 1  + 0.347·2-s − 0.879·4-s − 1.87·5-s − 0.652·8-s + 9-s − 0.652·10-s + 0.652·16-s + 0.347·18-s + 1.53·19-s + 1.65·20-s + 2.53·25-s + 31-s + 0.879·32-s − 0.879·36-s + 0.532·38-s + 1.22·40-s + 0.347·41-s − 1.87·45-s − 47-s + 0.879·50-s + 0.347·59-s + 0.347·62-s − 0.347·64-s − 67-s + 1.53·71-s − 0.652·72-s − 1.34·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1519\)    =    \(7^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(0.758079\)
Root analytic conductor: \(0.870677\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1519} (1177, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1519,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7914123373\)
\(L(\frac12)\) \(\approx\) \(0.7914123373\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
31 \( 1 - T \)
good2 \( 1 - 0.347T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 + 1.87T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - 1.53T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 0.347T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - 0.347T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + T + T^{2} \)
71 \( 1 - 1.53T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - 1.53T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.616230876635770483963441151255, −8.777674307805174207411100966756, −7.924117616702260715898240547545, −7.49306924840174705775518066469, −6.52624915984847684343292951118, −5.15801449213831719551844462716, −4.53887474819043531732364742425, −3.80397147865340992980554819120, −3.12377792501494331130167278924, −0.925997377301685176409720558602, 0.925997377301685176409720558602, 3.12377792501494331130167278924, 3.80397147865340992980554819120, 4.53887474819043531732364742425, 5.15801449213831719551844462716, 6.52624915984847684343292951118, 7.49306924840174705775518066469, 7.924117616702260715898240547545, 8.777674307805174207411100966756, 9.616230876635770483963441151255

Graph of the $Z$-function along the critical line