| L(s) = 1 | + 2·17-s + 2·25-s − 2·37-s + 2·41-s − 2·49-s − 2·61-s − 2·73-s − 81-s + 2·89-s − 2·97-s + 2·101-s − 2·113-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
| L(s) = 1 | + 2·17-s + 2·25-s − 2·37-s + 2·41-s − 2·49-s − 2·61-s − 2·73-s − 81-s + 2·89-s − 2·97-s + 2·101-s − 2·113-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
Λ(s)=(=(861184s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(861184s/2ΓC(s)2L(s)Λ(1−s)
| Degree: |
4 |
| Conductor: |
861184
= 210⋅292
|
| Sign: |
1
|
| Analytic conductor: |
0.214491 |
| Root analytic conductor: |
0.680538 |
| Motivic weight: |
0 |
| Rational: |
yes |
| Arithmetic: |
yes |
| Character: |
Trivial
|
| Primitive: |
no
|
| Self-dual: |
yes
|
| Analytic rank: |
0
|
| Selberg data: |
(4, 861184, ( :0,0), 1)
|
Particular Values
| L(21) |
≈ |
1.032048349 |
| L(21) |
≈ |
1.032048349 |
| L(1) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36304149450379844748860503775, −10.32649361217922295847449140380, −9.468547787861388404157723393169, −9.373388442556614213884140929250, −8.800905635057467287936450614945, −8.466253626489076912498544923611, −7.78308213296023797723750067087, −7.70895793192274073880353785246, −7.08413554795742013658105486717, −6.74187740141601614423438985830, −6.06865082882127313601233434598, −5.83521575878393572733199904659, −5.07770353870020962471690943247, −4.96901346407292027055914794572, −4.26646666091638714178021999709, −3.63647565151377367456151427332, −3.01097054155806471359742676440, −2.87338733072793603172176381016, −1.71392705373248765773633153936, −1.15452819524465421065337968404,
1.15452819524465421065337968404, 1.71392705373248765773633153936, 2.87338733072793603172176381016, 3.01097054155806471359742676440, 3.63647565151377367456151427332, 4.26646666091638714178021999709, 4.96901346407292027055914794572, 5.07770353870020962471690943247, 5.83521575878393572733199904659, 6.06865082882127313601233434598, 6.74187740141601614423438985830, 7.08413554795742013658105486717, 7.70895793192274073880353785246, 7.78308213296023797723750067087, 8.466253626489076912498544923611, 8.800905635057467287936450614945, 9.373388442556614213884140929250, 9.468547787861388404157723393169, 10.32649361217922295847449140380, 10.36304149450379844748860503775