Properties

Label 4-567e2-1.1-c0e2-0-7
Degree $4$
Conductor $321489$
Sign $1$
Analytic cond. $0.0800719$
Root an. cond. $0.531949$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 2·8-s + 11-s − 14-s + 2·16-s + 22-s − 2·23-s − 25-s − 28-s − 2·29-s + 2·32-s − 2·37-s + 43-s + 44-s − 2·46-s − 50-s − 2·53-s − 2·56-s − 2·58-s + 3·64-s + 67-s − 2·71-s − 2·74-s − 77-s + 79-s + ⋯
L(s)  = 1  + 2-s + 4-s − 7-s + 2·8-s + 11-s − 14-s + 2·16-s + 22-s − 2·23-s − 25-s − 28-s − 2·29-s + 2·32-s − 2·37-s + 43-s + 44-s − 2·46-s − 50-s − 2·53-s − 2·56-s − 2·58-s + 3·64-s + 67-s − 2·71-s − 2·74-s − 77-s + 79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 321489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 321489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(321489\)    =    \(3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.0800719\)
Root analytic conductor: \(0.531949\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 321489,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.469821136\)
\(L(\frac12)\) \(\approx\) \(1.469821136\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + T + T^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 + T + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T + T^{2} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03894343978437635354470649680, −11.01213510776796008077466787828, −10.26492597290797364311265623501, −9.965614092200162167904342640292, −9.578563332375894758161409830910, −9.126884492599423864605666810890, −8.425168318342960032448786383955, −7.922766317425265524038110269641, −7.39511579303658622609112329814, −7.21691880131830335540995874591, −6.47272779143865155221813273215, −6.17336019709093762902976537575, −5.74549199459339738671089215640, −5.17074570175580096443816158640, −4.49668122754269432802427301427, −3.86900875947489756213189227700, −3.76844469612622508811687578974, −3.07743310728371945458667310491, −1.89819266723662397843145634222, −1.80881972249632096017421423116, 1.80881972249632096017421423116, 1.89819266723662397843145634222, 3.07743310728371945458667310491, 3.76844469612622508811687578974, 3.86900875947489756213189227700, 4.49668122754269432802427301427, 5.17074570175580096443816158640, 5.74549199459339738671089215640, 6.17336019709093762902976537575, 6.47272779143865155221813273215, 7.21691880131830335540995874591, 7.39511579303658622609112329814, 7.922766317425265524038110269641, 8.425168318342960032448786383955, 9.126884492599423864605666810890, 9.578563332375894758161409830910, 9.965614092200162167904342640292, 10.26492597290797364311265623501, 11.01213510776796008077466787828, 11.03894343978437635354470649680

Graph of the $Z$-function along the critical line