Properties

Label 4-2448e2-1.1-c0e2-0-5
Degree $4$
Conductor $5992704$
Sign $1$
Analytic cond. $1.49257$
Root an. cond. $1.10531$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·11-s − 2·13-s + 2·17-s + 2·19-s + 2·23-s + 25-s + 2·41-s − 2·43-s − 4·55-s − 4·65-s + 4·85-s + 4·95-s − 2·103-s + 2·107-s − 2·113-s + 4·115-s + 121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + 4·143-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 2·5-s − 2·11-s − 2·13-s + 2·17-s + 2·19-s + 2·23-s + 25-s + 2·41-s − 2·43-s − 4·55-s − 4·65-s + 4·85-s + 4·95-s − 2·103-s + 2·107-s − 2·113-s + 4·115-s + 121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + 4·143-s + 149-s + 151-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5992704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5992704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5992704\)    =    \(2^{8} \cdot 3^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1.49257\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5992704,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.789913009\)
\(L(\frac12)\) \(\approx\) \(1.789913009\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_2^2$ \( 1 + T^{4} \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2^2$ \( 1 + T^{4} \)
37$C_2^2$ \( 1 + T^{4} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2^2$ \( 1 + T^{4} \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2^2$ \( 1 + T^{4} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_2^2$ \( 1 + T^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.411235665789165665742062316307, −9.318673562884599759903396227912, −8.575258828568326335319606212382, −7.916638521008225445748590472741, −7.75843990644232634191827378766, −7.56772049893492998970091342130, −6.92309105069836742310596638135, −6.84418102389255540213900169227, −5.92928189347892353234292917237, −5.72283844985545569111326160417, −5.26446251428881365846986867713, −5.21274652103574560327797028027, −4.97825624274766703740845303727, −4.25745655066536670597549280370, −3.18506183361364499007532921764, −3.13103680615111031200272645169, −2.64983340469225803456731695853, −2.25157484280692297512002382403, −1.59156029747143447406200192966, −0.939053410406185639029433388456, 0.939053410406185639029433388456, 1.59156029747143447406200192966, 2.25157484280692297512002382403, 2.64983340469225803456731695853, 3.13103680615111031200272645169, 3.18506183361364499007532921764, 4.25745655066536670597549280370, 4.97825624274766703740845303727, 5.21274652103574560327797028027, 5.26446251428881365846986867713, 5.72283844985545569111326160417, 5.92928189347892353234292917237, 6.84418102389255540213900169227, 6.92309105069836742310596638135, 7.56772049893492998970091342130, 7.75843990644232634191827378766, 7.916638521008225445748590472741, 8.575258828568326335319606212382, 9.318673562884599759903396227912, 9.411235665789165665742062316307

Graph of the $Z$-function along the critical line