| L(s) = 1 | + i·2-s − 4-s − 2i·5-s − i·8-s + 2·10-s + 13-s + 16-s + 2i·20-s − 3·25-s + i·26-s + i·32-s − 2·40-s + 2i·41-s − 49-s − 3i·50-s + ⋯ |
| L(s) = 1 | + i·2-s − 4-s − 2i·5-s − i·8-s + 2·10-s + 13-s + 16-s + 2i·20-s − 3·25-s + i·26-s + i·32-s − 2·40-s + 2i·41-s − 49-s − 3i·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7889822930\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7889822930\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 13 | \( 1 - T \) |
| good | 5 | \( 1 + 2iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - 2iT - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40966930484865659583781796671, −9.901938763572835733248004799793, −9.195643625963417459633044764274, −8.407532652648921760864359086178, −7.925384505200030158799069736783, −6.47856971826253364322563561530, −5.53811160124869520670393195497, −4.75549649486906114033186671544, −3.84361350604592800465599760222, −1.21066888972617230624490292401,
2.10827621551922016124207030190, 3.20641668342072801590630720183, 3.95166053871250624767144015994, 5.61929664722591132016659778564, 6.61027724732671725095969472479, 7.63209452562785546442834820896, 8.718394682031698263175562633973, 9.871993969996970715085148754548, 10.50989477631144851213797682503, 11.16416566599182160015947254535