Properties

Label 2-2912-728.181-c0-0-4
Degree $2$
Conductor $2912$
Sign $1$
Analytic cond. $1.45327$
Root an. cond. $1.20551$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 11-s + 13-s − 21-s + 23-s + 25-s − 27-s + 31-s + 33-s − 37-s + 39-s − 41-s + 47-s + 49-s − 61-s + 67-s + 69-s − 73-s + 75-s − 77-s + 79-s − 81-s + 2·89-s − 91-s + 93-s − 97-s + ⋯
L(s)  = 1  + 3-s − 7-s + 11-s + 13-s − 21-s + 23-s + 25-s − 27-s + 31-s + 33-s − 37-s + 39-s − 41-s + 47-s + 49-s − 61-s + 67-s + 69-s − 73-s + 75-s − 77-s + 79-s − 81-s + 2·89-s − 91-s + 93-s − 97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(1.45327\)
Root analytic conductor: \(1.20551\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2912} (2001, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.685999142\)
\(L(\frac12)\) \(\approx\) \(1.685999142\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 - T + T^{2} \)
5 \( ( 1 - T )( 1 + T ) \)
11 \( 1 - T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 - T + T^{2} \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 - T + T^{2} \)
37 \( 1 + T + T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 - T + T^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 + T + T^{2} \)
67 \( 1 - T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( 1 + T + T^{2} \)
79 \( 1 - T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )^{2} \)
97 \( 1 + T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.849373549970716944323424258382, −8.525776966805402485062876912277, −7.44116450417031792384042408310, −6.65773794856622066561832897070, −6.13258191249192359507627950107, −5.02718543717052400859687443426, −3.85325149807876038283678915907, −3.35255790598384755781314044906, −2.56285936883412218955073813438, −1.23288935504299016976400626513, 1.23288935504299016976400626513, 2.56285936883412218955073813438, 3.35255790598384755781314044906, 3.85325149807876038283678915907, 5.02718543717052400859687443426, 6.13258191249192359507627950107, 6.65773794856622066561832897070, 7.44116450417031792384042408310, 8.525776966805402485062876912277, 8.849373549970716944323424258382

Graph of the $Z$-function along the critical line