L(s) = 1 | + 3-s − 5-s + 13-s − 15-s + 17-s + 19-s + 25-s − 27-s + 29-s − 31-s + 39-s − 47-s + 49-s + 51-s + 53-s + 57-s + 59-s + 61-s − 65-s − 71-s − 73-s + 75-s + 2·79-s − 81-s − 85-s + 87-s − 89-s + ⋯ |
L(s) = 1 | + 3-s − 5-s + 13-s − 15-s + 17-s + 19-s + 25-s − 27-s + 29-s − 31-s + 39-s − 47-s + 49-s + 51-s + 53-s + 57-s + 59-s + 61-s − 65-s − 71-s − 73-s + 75-s + 2·79-s − 81-s − 85-s + 87-s − 89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.511744652\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.511744652\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 - T + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( ( 1 - T )^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.744763443184652182534172704040, −8.356735175961630519588426590991, −7.63760242744065964660796513705, −7.03839187600605989078337306270, −5.90933423672003930063808663009, −5.07904411302221840784736581166, −3.86995060420898732126780616295, −3.46514720728198954626593092266, −2.61290429750629892385151107113, −1.16954522764747222840157357890,
1.16954522764747222840157357890, 2.61290429750629892385151107113, 3.46514720728198954626593092266, 3.86995060420898732126780616295, 5.07904411302221840784736581166, 5.90933423672003930063808663009, 7.03839187600605989078337306270, 7.63760242744065964660796513705, 8.356735175961630519588426590991, 8.744763443184652182534172704040