Properties

Label 2-2555-2555.2554-c0-0-9
Degree $2$
Conductor $2555$
Sign $1$
Analytic cond. $1.27511$
Root an. cond. $1.12920$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 5-s + 7-s − 12-s − 15-s + 16-s + 20-s − 21-s + 25-s + 27-s + 28-s − 31-s + 35-s − 43-s − 48-s + 49-s − 53-s − 59-s − 60-s + 64-s − 71-s + 73-s − 75-s − 79-s + 80-s − 81-s + ⋯
L(s)  = 1  − 3-s + 4-s + 5-s + 7-s − 12-s − 15-s + 16-s + 20-s − 21-s + 25-s + 27-s + 28-s − 31-s + 35-s − 43-s − 48-s + 49-s − 53-s − 59-s − 60-s + 64-s − 71-s + 73-s − 75-s − 79-s + 80-s − 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2555 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2555 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2555\)    =    \(5 \cdot 7 \cdot 73\)
Sign: $1$
Analytic conductor: \(1.27511\)
Root analytic conductor: \(1.12920\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2555} (2554, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2555,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.444508201\)
\(L(\frac12)\) \(\approx\) \(1.444508201\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 - T \)
73 \( 1 - T \)
good2 \( ( 1 - T )( 1 + T ) \)
3 \( 1 + T + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 + T + T^{2} \)
59 \( 1 + T + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 + T + T^{2} \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.108908833758165671219719608208, −8.251523515270737789507406997438, −7.38220353980112748668537834994, −6.61204612696609718192525077234, −5.94662144115643546774970353250, −5.38129309942741341083262254361, −4.66849580252795647621625332346, −3.20706408374643125181813565258, −2.14529746446223228689409451342, −1.33988953506862944450549930077, 1.33988953506862944450549930077, 2.14529746446223228689409451342, 3.20706408374643125181813565258, 4.66849580252795647621625332346, 5.38129309942741341083262254361, 5.94662144115643546774970353250, 6.61204612696609718192525077234, 7.38220353980112748668537834994, 8.251523515270737789507406997438, 9.108908833758165671219719608208

Graph of the $Z$-function along the critical line