L(s) = 1 | + 3-s + 7-s + 9-s − 2·19-s + 21-s + 25-s + 27-s + 31-s − 2·37-s − 43-s − 2·57-s − 61-s + 63-s + 67-s + 73-s + 75-s − 79-s + 81-s + 93-s + 97-s − 103-s + 109-s − 2·111-s + ⋯ |
L(s) = 1 | + 3-s + 7-s + 9-s − 2·19-s + 21-s + 25-s + 27-s + 31-s − 2·37-s − 43-s − 2·57-s − 61-s + 63-s + 67-s + 73-s + 75-s − 79-s + 81-s + 93-s + 97-s − 103-s + 109-s − 2·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.801543183\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.801543183\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 13 | \( 1 \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 + T )^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( ( 1 + T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.052060506000534036606390910019, −8.484211244126681244293321052855, −8.066912132663938918100343545122, −7.04921410484044153120243931167, −6.40455457469117202005815319842, −5.03809166549031321567333413416, −4.45514515562568280960611529949, −3.48892977091238303978641902382, −2.39291882477095425458968507831, −1.55492114260842589837954511465,
1.55492114260842589837954511465, 2.39291882477095425458968507831, 3.48892977091238303978641902382, 4.45514515562568280960611529949, 5.03809166549031321567333413416, 6.40455457469117202005815319842, 7.04921410484044153120243931167, 8.066912132663938918100343545122, 8.484211244126681244293321052855, 9.052060506000534036606390910019