L(s) = 1 | + 3-s − 7-s + 9-s + 2·19-s − 21-s + 25-s + 27-s − 31-s + 2·37-s − 43-s + 2·57-s − 61-s − 63-s − 67-s − 73-s + 75-s − 79-s + 81-s − 93-s − 97-s − 103-s − 109-s + 2·111-s + ⋯ |
L(s) = 1 | + 3-s − 7-s + 9-s + 2·19-s − 21-s + 25-s + 27-s − 31-s + 2·37-s − 43-s + 2·57-s − 61-s − 63-s − 67-s − 73-s + 75-s − 79-s + 81-s − 93-s − 97-s − 103-s − 109-s + 2·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.581275760\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.581275760\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 13 | \( 1 \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( ( 1 - T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.454574954633483056072461448238, −8.660692003001619210119893521001, −7.70476280041915015927008805123, −7.17724878266029045367539949652, −6.31527577014173187924828131402, −5.30059554267673613377994374382, −4.26356720731208039210378963644, −3.25035240254671262768438603471, −2.80967811939367674525359661562, −1.33946879406031808855362891340,
1.33946879406031808855362891340, 2.80967811939367674525359661562, 3.25035240254671262768438603471, 4.26356720731208039210378963644, 5.30059554267673613377994374382, 6.31527577014173187924828131402, 7.17724878266029045367539949652, 7.70476280041915015927008805123, 8.660692003001619210119893521001, 9.454574954633483056072461448238