Properties

Label 2-1712-107.106-c0-0-2
Degree $2$
Conductor $1712$
Sign $1$
Analytic cond. $0.854399$
Root an. cond. $0.924337$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 11-s − 13-s + 19-s + 23-s + 25-s − 27-s + 2·29-s + 33-s − 37-s − 39-s − 41-s − 2·47-s + 49-s − 53-s + 57-s − 61-s + 69-s + 75-s + 79-s − 81-s − 2·83-s + 2·87-s − 89-s − 101-s − 107-s − 111-s + ⋯
L(s)  = 1  + 3-s + 11-s − 13-s + 19-s + 23-s + 25-s − 27-s + 2·29-s + 33-s − 37-s − 39-s − 41-s − 2·47-s + 49-s − 53-s + 57-s − 61-s + 69-s + 75-s + 79-s − 81-s − 2·83-s + 2·87-s − 89-s − 101-s − 107-s − 111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1712\)    =    \(2^{4} \cdot 107\)
Sign: $1$
Analytic conductor: \(0.854399\)
Root analytic conductor: \(0.924337\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1712} (641, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1712,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.583997911\)
\(L(\frac12)\) \(\approx\) \(1.583997911\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
107 \( 1 + T \)
good3 \( 1 - T + T^{2} \)
5 \( ( 1 - T )( 1 + T ) \)
7 \( ( 1 - T )( 1 + T ) \)
11 \( 1 - T + T^{2} \)
13 \( 1 + T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 - T + T^{2} \)
23 \( 1 - T + T^{2} \)
29 \( ( 1 - T )^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( 1 + T + T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 + T )^{2} \)
53 \( 1 + T + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 + T + T^{2} \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( 1 - T + T^{2} \)
83 \( ( 1 + T )^{2} \)
89 \( 1 + T + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.416568165661064828325574891137, −8.729702169175044023077996316357, −8.128229193080369318838221062306, −7.12699438029582317522019527625, −6.59461948257335873781208059516, −5.29259814715282110751262168275, −4.54401707467350727789822750716, −3.29863113264769779121767674208, −2.80640427164256468295740918371, −1.44423586626459901136002168602, 1.44423586626459901136002168602, 2.80640427164256468295740918371, 3.29863113264769779121767674208, 4.54401707467350727789822750716, 5.29259814715282110751262168275, 6.59461948257335873781208059516, 7.12699438029582317522019527625, 8.128229193080369318838221062306, 8.729702169175044023077996316357, 9.416568165661064828325574891137

Graph of the $Z$-function along the critical line