L(s) = 1 | − 3-s + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)7-s + 9-s + (0.866 − 0.5i)11-s + (0.866 + 0.5i)15-s + (0.5 + 0.866i)17-s + (0.866 + 0.5i)21-s + (−0.5 + 0.866i)23-s + (0.5 + 0.866i)25-s − 27-s + (−0.5 + 0.866i)29-s − i·31-s + (−0.866 + 0.5i)33-s + (0.5 + 0.866i)35-s + ⋯ |
L(s) = 1 | − 3-s + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)7-s + 9-s + (0.866 − 0.5i)11-s + (0.866 + 0.5i)15-s + (0.5 + 0.866i)17-s + (0.866 + 0.5i)21-s + (−0.5 + 0.866i)23-s + (0.5 + 0.866i)25-s − 27-s + (−0.5 + 0.866i)29-s − i·31-s + (−0.866 + 0.5i)33-s + (0.5 + 0.866i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 988 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 988 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6555294941 - 0.2432549504i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6555294941 - 0.2432549504i\) |
\(L(1)\) |
\(\approx\) |
\(0.6407490551 - 0.09448339644i\) |
\(L(1)\) |
\(\approx\) |
\(0.6407490551 - 0.09448339644i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.866 - 0.5i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.20172318742891547876774812059, −21.11879686788886484557786584579, −20.09700745466738600287574283988, −19.23310500674192055770694391044, −18.69125518242064784027506144841, −17.92774668917062098414115555345, −16.99466045375226173870988109128, −16.15765358448222316224462848320, −15.71114518059327438140561378123, −14.82187555406535375276326539984, −13.885498335085061527811204777395, −12.57222257298737172774004973197, −12.17666428748590360009565716018, −11.52903687222301145919741960799, −10.57879852953583287707970699902, −9.81412561907539831387584847749, −8.93371943976980795634576715252, −7.65115277191651484772413152932, −6.86787482967639584949505248873, −6.29956708534149241598225198817, −5.259634875183633241226601052488, −4.233132846811689045277527119807, −3.45761242692842931614418914346, −2.246816242060778388570346276137, −0.7100949322066447535854726362,
0.587182449491989407695953032453, 1.58603063949316848388097431424, 3.63202408913982477087896882665, 3.81080615160550132473042492470, 5.05528994036257362143286611030, 5.95274529775119897260078120769, 6.77483310309046506423579967338, 7.55811131251189074542865460212, 8.59485666129530488925433742801, 9.6184515964301660029355776896, 10.38257505515708670059832882746, 11.37812795725661388609433684587, 11.887738481901693048391728619268, 12.76251927012094386025618275635, 13.34755056235762674250933358096, 14.58306921412218060617303166378, 15.583969893962207141034969767809, 16.20857030405584027155973952514, 16.89728674420590625625276091659, 17.31722882091555107388068053796, 18.66549156314433258110511728203, 19.201005884212353161684304848, 19.92924451759231855691034224372, 20.78026275912770878164560457271, 21.97628683828366081040800271042