| L(s) = 1 | + (0.994 − 0.104i)2-s + (0.978 − 0.207i)4-s + (−0.866 + 0.5i)7-s + (0.951 − 0.309i)8-s + (0.104 + 0.994i)11-s + (−0.809 + 0.587i)14-s + (0.913 − 0.406i)16-s + (0.743 + 0.669i)17-s + (−0.669 + 0.743i)19-s + (0.207 + 0.978i)22-s + (−0.994 + 0.104i)23-s + (−0.743 + 0.669i)28-s + (0.669 + 0.743i)29-s + (0.309 + 0.951i)31-s + (0.866 − 0.5i)32-s + ⋯ |
| L(s) = 1 | + (0.994 − 0.104i)2-s + (0.978 − 0.207i)4-s + (−0.866 + 0.5i)7-s + (0.951 − 0.309i)8-s + (0.104 + 0.994i)11-s + (−0.809 + 0.587i)14-s + (0.913 − 0.406i)16-s + (0.743 + 0.669i)17-s + (−0.669 + 0.743i)19-s + (0.207 + 0.978i)22-s + (−0.994 + 0.104i)23-s + (−0.743 + 0.669i)28-s + (0.669 + 0.743i)29-s + (0.309 + 0.951i)31-s + (0.866 − 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.574 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.574 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.238910606 + 1.164692946i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.238910606 + 1.164692946i\) |
| \(L(1)\) |
\(\approx\) |
\(1.770222388 + 0.2753105871i\) |
| \(L(1)\) |
\(\approx\) |
\(1.770222388 + 0.2753105871i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (0.994 - 0.104i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.104 + 0.994i)T \) |
| 17 | \( 1 + (0.743 + 0.669i)T \) |
| 19 | \( 1 + (-0.669 + 0.743i)T \) |
| 23 | \( 1 + (-0.994 + 0.104i)T \) |
| 29 | \( 1 + (0.669 + 0.743i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.406 - 0.913i)T \) |
| 41 | \( 1 + (-0.913 + 0.406i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.951 - 0.309i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.913 + 0.406i)T \) |
| 67 | \( 1 + (-0.207 + 0.978i)T \) |
| 71 | \( 1 + (0.978 - 0.207i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.951 - 0.309i)T \) |
| 89 | \( 1 + (-0.104 - 0.994i)T \) |
| 97 | \( 1 + (0.207 + 0.978i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.86761011590896811336402557131, −20.861777258950760848741388732011, −20.24315787747558031268290811894, −19.31307795178782993657295690954, −18.80928388372336872465595326137, −17.32179584961941394966272128110, −16.72272503925852153445962355841, −15.922301291178790651215839074153, −15.38777550892653621595503633036, −14.12569599942860300403008806911, −13.7722907358124012790329728868, −12.96910264102980859790360516136, −12.10636862420085528862851414235, −11.3444841688449025061657266839, −10.45043564222518101352139104315, −9.64279499775667933635530172355, −8.374874340361507778673528841015, −7.51186838498390894742113275545, −6.49840482469959191284079603466, −6.02597410808434328513471338199, −4.9150475054183622926812110598, −3.95228899333521148789568015177, −3.20111430352336826239518533606, −2.32271460544447762629239763747, −0.76182429681803701451629496483,
1.52689456777066097996756518733, 2.429252275256840434935429061287, 3.46229475953890856801936247004, 4.19582317932480749630505463114, 5.29570397618732089319575477637, 6.07875065244391215380033541875, 6.811195173233782734583299416919, 7.75055342394122332862362441107, 8.87653553323993020251584741602, 10.12467058862485335882719399265, 10.4016919167967299588439188203, 11.82036204751407214344884357765, 12.44433246067978463867325794031, 12.79841756115017392788140395276, 14.00473317791162680714152062290, 14.60627870344229699516622577964, 15.467287252510129238409601708232, 16.08415277395258149001975302208, 16.9036134937301907059282108415, 17.92026999913075997624245043822, 19.03619923059459429845259219547, 19.56749725726302986782075073669, 20.39553375685723342017015880870, 21.209577061146902368295367689099, 21.92483114787966038482620237559