| L(s) = 1 | + (0.279 − 0.960i)2-s + (−0.957 − 0.288i)3-s + (−0.844 − 0.536i)4-s + (−0.442 + 0.896i)5-s + (−0.544 + 0.838i)6-s + (−0.638 − 0.769i)7-s + (−0.750 + 0.660i)8-s + (0.833 + 0.552i)9-s + (0.737 + 0.675i)10-s + (0.353 − 0.935i)11-s + (0.653 + 0.756i)12-s + (0.353 + 0.935i)13-s + (−0.917 + 0.398i)14-s + (0.682 − 0.730i)15-s + (0.425 + 0.905i)16-s + (0.560 − 0.828i)17-s + ⋯ |
| L(s) = 1 | + (0.279 − 0.960i)2-s + (−0.957 − 0.288i)3-s + (−0.844 − 0.536i)4-s + (−0.442 + 0.896i)5-s + (−0.544 + 0.838i)6-s + (−0.638 − 0.769i)7-s + (−0.750 + 0.660i)8-s + (0.833 + 0.552i)9-s + (0.737 + 0.675i)10-s + (0.353 − 0.935i)11-s + (0.653 + 0.756i)12-s + (0.353 + 0.935i)13-s + (−0.917 + 0.398i)14-s + (0.682 − 0.730i)15-s + (0.425 + 0.905i)16-s + (0.560 − 0.828i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.734 + 0.678i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.734 + 0.678i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1254104201 - 0.3203901622i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.1254104201 - 0.3203901622i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5041615187 - 0.3776991623i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5041615187 - 0.3776991623i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 967 | \( 1 \) |
| good | 2 | \( 1 + (0.279 - 0.960i)T \) |
| 3 | \( 1 + (-0.957 - 0.288i)T \) |
| 5 | \( 1 + (-0.442 + 0.896i)T \) |
| 7 | \( 1 + (-0.638 - 0.769i)T \) |
| 11 | \( 1 + (0.353 - 0.935i)T \) |
| 13 | \( 1 + (0.353 + 0.935i)T \) |
| 17 | \( 1 + (0.560 - 0.828i)T \) |
| 19 | \( 1 + (-0.822 + 0.568i)T \) |
| 23 | \( 1 + (0.993 + 0.116i)T \) |
| 29 | \( 1 + (0.0876 - 0.996i)T \) |
| 31 | \( 1 + (-0.477 - 0.878i)T \) |
| 37 | \( 1 + (-0.511 + 0.859i)T \) |
| 41 | \( 1 + (0.854 - 0.519i)T \) |
| 43 | \( 1 + (-0.864 - 0.502i)T \) |
| 47 | \( 1 + (-0.145 - 0.989i)T \) |
| 53 | \( 1 + (-0.334 + 0.942i)T \) |
| 59 | \( 1 + (0.527 - 0.849i)T \) |
| 61 | \( 1 + (0.854 - 0.519i)T \) |
| 67 | \( 1 + (-0.477 + 0.878i)T \) |
| 71 | \( 1 + (0.279 + 0.960i)T \) |
| 73 | \( 1 + (-0.334 - 0.942i)T \) |
| 79 | \( 1 + (-0.107 + 0.994i)T \) |
| 83 | \( 1 + (-0.696 - 0.717i)T \) |
| 89 | \( 1 + (-0.477 + 0.878i)T \) |
| 97 | \( 1 + (-0.900 + 0.433i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.58090784955350345076789906906, −21.550697227278790288331620595105, −21.07344749437405132132793022618, −19.81249422536449434831885020050, −18.96056067301002534672605932719, −17.814644636764361284492526049805, −17.48777693449181194315906485102, −16.43554939835511325324901377805, −16.11903613988926369409247143527, −15.12757128003391591301296724902, −14.86615214778104130243857870787, −13.081499920478872875424057347863, −12.62542474324127263628803123585, −12.3077677406295044413940508199, −11.054495298888238916466191864, −9.935641712621675782285986656618, −9.09901514287091675686974789488, −8.43278897189186228970287104655, −7.27375795612405015750430030672, −6.49014492816848858382080675757, −5.58626875702080860949107691666, −5.02046888660165274393189231559, −4.155859289641348990148335940945, −3.22632938421035225614561026161, −1.26325036061695204105700624324,
0.18470176675930847933801442261, 1.285049017245612072856237339492, 2.58242519683671852912021073788, 3.69361931817608378447143561590, 4.18122849843266391172705306516, 5.47680715062945386465600938965, 6.38705409358905406675499434031, 6.988000821985691727190948799033, 8.175000264759348453752743972083, 9.47093561219477295098952216988, 10.24615253468027653282712207956, 11.01040974246759231628932876636, 11.48973493339264750248580852251, 12.20053780706941293998879717613, 13.29771267405275765839400197691, 13.78556463772017799274001702471, 14.67361514266903272434162836684, 15.82008970341181933412921530144, 16.71647774489657855934575305920, 17.32990833254412873659194013020, 18.66613880031726434135863191555, 18.83613093309970358045931647421, 19.38030029621206197888784387904, 20.584355365109717579560754308923, 21.40511262400369236295324998670