| L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s + 17-s − 19-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + 35-s + 37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s + 17-s − 19-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 + 0.866i)29-s + (−0.5 + 0.866i)31-s + 35-s + 37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.091119494 + 0.9155579654i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.091119494 + 0.9155579654i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9292718134 + 0.1489551105i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9292718134 + 0.1489551105i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.39340355308840720450251981183, −20.83969670738663159972264293409, −19.605462708294075433395981426243, −19.28540213974362480220708913687, −18.523439770319169056937192673517, −17.32858361124229100370360999660, −16.6132821022130747328924916155, −16.02119897108724000981289294214, −15.17006109070689510552786475557, −14.40398509228488545567005658529, −13.1437380968898147611784738911, −12.762762966729569162208981733044, −11.69621787111821105453157320428, −11.298721463720684746466084548379, −9.826468656468049305498368884116, −9.21671521083940152137619452976, −8.36532109097921678249700363976, −7.71512674270038554753893345270, −6.305462063546984154340043182041, −5.74465445424983225525045358784, −4.690538099066209472033163931939, −3.70973066232431268256029492026, −2.8139467031203186509867082443, −1.463147444919176661763356295691, −0.40579724849859025458304049413,
0.83431168218869366503437372381, 2.18704157184462988396294068936, 3.32876251998193746314382575831, 3.97795732724135850923752086276, 4.97336857615239342943831439811, 6.422575541318478816203682696367, 6.90279596404271174641097744258, 7.66232421693726167337956199129, 8.70454249752841326195327488369, 9.867874802198086673903957485068, 10.44690469394532280634529593775, 11.17467491768406566588675837463, 12.3001016020545927853875598411, 12.81590481658856227096559916720, 14.11104240936032424652394524673, 14.5477238280746040935016507370, 15.35973517583392998171811309246, 16.36257276881765023479670150742, 16.99245174924176416774004488046, 17.91710877982355902199235890670, 18.754711595232646619876260875213, 19.50014172987016392481274464776, 20.07428965627780636789944110695, 20.976490605097896201209429457130, 21.98700023900238301654870779875