| L(s) = 1 | + (0.5 − 0.866i)5-s + (−0.5 + 0.866i)7-s − 11-s + (−0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s − 29-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)35-s + (0.5 − 0.866i)37-s + (−0.5 − 0.866i)41-s + (0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.866i)5-s + (−0.5 + 0.866i)7-s − 11-s + (−0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s − 29-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)35-s + (0.5 − 0.866i)37-s + (−0.5 − 0.866i)41-s + (0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1690722138 - 0.5302945334i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1690722138 - 0.5302945334i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8141407557 - 0.1594676672i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8141407557 - 0.1594676672i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.130721943914030633772867723181, −21.51265316235213133838451515555, −20.52615640549353995911817915839, −19.80336679328615476846651757665, −18.97441237154922801113804589487, −18.165375479016938055009117685588, −17.49811647779052736598630582019, −16.7064762371497842614406200632, −15.69728648227310840322335811719, −15.05659882744662493199290807881, −14.07617930597489789862174179462, −13.27533836871873034254651474652, −12.92237404518463458045322669558, −11.31870394456924924278648070071, −10.918320026106288366986399938910, −9.92426203404675750270116943263, −9.46451145051558923891370899138, −7.988238679579262591459767737781, −7.35795783047434483269117248946, −6.44376720448813890834162958389, −5.70248495235182515196632049998, −4.51479849629492212889655735224, −3.450410562896791954117256845950, −2.67542852104119795442956715746, −1.52964582032484596115303425539,
0.22338692048638912535715542669, 1.83481665266733743495427606098, 2.59097103634675358710750019285, 3.7826544010600686552470855150, 5.09159402210146862718316083017, 5.494096351793957270532135163024, 6.47524992939188506412974146596, 7.644251141102224456390465623179, 8.55617966774511799258530575848, 9.27295572049419221469413510122, 9.98435143905003370333366064284, 10.97025447720194028430250764938, 12.175327022521884765877033865181, 12.58093295241475049823837680053, 13.43613913993651008452191539639, 14.219027953420790386654122514867, 15.33741426326920265464586899139, 16.123234157315502397243965283249, 16.50382919019695761867017335454, 17.73319701080079905142035117096, 18.33150066551152562332020575276, 19.01247534198063656485230962450, 20.27197552829516353278748885071, 20.57724160808289595759410531116, 21.53818398907808500373312643466