| L(s) = 1 | + (−0.156 − 0.987i)2-s + (0.0784 + 0.996i)3-s + (−0.951 + 0.309i)4-s + (0.972 − 0.233i)6-s + (−0.996 − 0.0784i)7-s + (0.453 + 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.382 − 0.923i)12-s + (−0.587 + 0.809i)13-s + (0.0784 + 0.996i)14-s + (0.809 − 0.587i)16-s + (0.309 + 0.951i)18-s + (−0.891 + 0.453i)19-s − i·21-s + (−0.923 − 0.382i)23-s + (−0.852 + 0.522i)24-s + ⋯ |
| L(s) = 1 | + (−0.156 − 0.987i)2-s + (0.0784 + 0.996i)3-s + (−0.951 + 0.309i)4-s + (0.972 − 0.233i)6-s + (−0.996 − 0.0784i)7-s + (0.453 + 0.891i)8-s + (−0.987 + 0.156i)9-s + (−0.382 − 0.923i)12-s + (−0.587 + 0.809i)13-s + (0.0784 + 0.996i)14-s + (0.809 − 0.587i)16-s + (0.309 + 0.951i)18-s + (−0.891 + 0.453i)19-s − i·21-s + (−0.923 − 0.382i)23-s + (−0.852 + 0.522i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 935 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 935 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2526524921 - 0.3671330497i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2526524921 - 0.3671330497i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6429863756 - 0.1086278092i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6429863756 - 0.1086278092i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.156 - 0.987i)T \) |
| 3 | \( 1 + (0.0784 + 0.996i)T \) |
| 7 | \( 1 + (-0.996 - 0.0784i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 19 | \( 1 + (-0.891 + 0.453i)T \) |
| 23 | \( 1 + (-0.923 - 0.382i)T \) |
| 29 | \( 1 + (0.760 - 0.649i)T \) |
| 31 | \( 1 + (0.972 + 0.233i)T \) |
| 37 | \( 1 + (-0.649 - 0.760i)T \) |
| 41 | \( 1 + (-0.760 - 0.649i)T \) |
| 43 | \( 1 + (0.707 - 0.707i)T \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.156 + 0.987i)T \) |
| 59 | \( 1 + (-0.891 - 0.453i)T \) |
| 61 | \( 1 + (-0.233 - 0.972i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.522 + 0.852i)T \) |
| 73 | \( 1 + (0.760 - 0.649i)T \) |
| 79 | \( 1 + (-0.522 - 0.852i)T \) |
| 83 | \( 1 + (0.987 + 0.156i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (-0.233 + 0.972i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.45569681348343428247022075463, −21.58627162948953682448042060577, −20.05912826093421617396978221145, −19.52894838010576336779171861118, −18.85828153548784093570120538606, −18.017945184607415707240968551749, −17.360564528229706295110264946981, −16.67448014428200248202340642319, −15.67545358807487335578555396472, −15.029902373628932973631609079815, −14.03971006279545983832049815322, −13.35924272312939574735973413994, −12.68425859135522472143890175522, −11.97584536559968834361598320594, −10.5033351113914250838337473912, −9.73500417441640661707654360171, −8.72415471521261789527015576378, −8.05976118881367265847000872209, −7.15842425070947117304671473557, −6.46857959126101779017832903999, −5.82351041155005371880912334485, −4.780115491620629384413912612050, −3.464138319387214011554516926979, −2.45689800980857146674878549646, −0.96302835149196906457278924653,
0.24604614517742264277721720892, 2.084637876260008414676089514319, 2.87051435271368317313506181158, 3.934368340635773947773140417984, 4.38104628911188751478883391376, 5.55016005746019418778689925320, 6.58777789499670269849320334713, 7.99491619392200080273555239257, 8.89206588296112835481828304354, 9.55087248050131455036713376593, 10.27510119571661224864138556489, 10.79938098856224470703790224952, 12.063945363495091934808775976368, 12.36498875241293081408079412118, 13.76696618126515260476722723921, 14.11577811373847358689831526356, 15.29484794533748427132936994706, 16.12962186061290841693023561465, 16.95969602235310904727181565741, 17.49525020196580511954069062192, 18.90950198785344433872476379791, 19.24092284946776888051644101509, 20.12962324140141774896653011193, 20.7707199529908867365164340955, 21.68734132226693603572347839887