| L(s) = 1 | + (−0.927 − 0.374i)2-s + (−0.241 + 0.970i)3-s + (0.719 + 0.694i)4-s + (0.587 − 0.809i)6-s + (0.939 + 0.342i)7-s + (−0.406 − 0.913i)8-s + (−0.882 − 0.469i)9-s + (0.978 + 0.207i)11-s + (−0.848 + 0.529i)12-s + (0.139 − 0.990i)13-s + (−0.743 − 0.669i)14-s + (0.0348 + 0.999i)16-s + (0.694 + 0.719i)17-s + (0.642 + 0.766i)18-s + (−0.0697 − 0.997i)19-s + ⋯ |
| L(s) = 1 | + (−0.927 − 0.374i)2-s + (−0.241 + 0.970i)3-s + (0.719 + 0.694i)4-s + (0.587 − 0.809i)6-s + (0.939 + 0.342i)7-s + (−0.406 − 0.913i)8-s + (−0.882 − 0.469i)9-s + (0.978 + 0.207i)11-s + (−0.848 + 0.529i)12-s + (0.139 − 0.990i)13-s + (−0.743 − 0.669i)14-s + (0.0348 + 0.999i)16-s + (0.694 + 0.719i)17-s + (0.642 + 0.766i)18-s + (−0.0697 − 0.997i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5358570621 + 0.8371067085i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5358570621 + 0.8371067085i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6977022777 + 0.1745836498i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6977022777 + 0.1745836498i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
| good | 2 | \( 1 + (-0.927 - 0.374i)T \) |
| 3 | \( 1 + (-0.241 + 0.970i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (0.978 + 0.207i)T \) |
| 13 | \( 1 + (0.139 - 0.990i)T \) |
| 17 | \( 1 + (0.694 + 0.719i)T \) |
| 19 | \( 1 + (-0.0697 - 0.997i)T \) |
| 23 | \( 1 + (-0.743 - 0.669i)T \) |
| 29 | \( 1 + (-0.994 + 0.104i)T \) |
| 31 | \( 1 + (-0.587 + 0.809i)T \) |
| 41 | \( 1 + (-0.990 - 0.139i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.913 - 0.406i)T \) |
| 53 | \( 1 + (-0.559 + 0.829i)T \) |
| 59 | \( 1 + (-0.999 + 0.0348i)T \) |
| 61 | \( 1 + (0.469 + 0.882i)T \) |
| 67 | \( 1 + (0.559 + 0.829i)T \) |
| 71 | \( 1 + (-0.241 + 0.970i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (0.275 + 0.961i)T \) |
| 83 | \( 1 + (0.719 - 0.694i)T \) |
| 89 | \( 1 + (-0.788 + 0.615i)T \) |
| 97 | \( 1 + (0.406 - 0.913i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.1649709064842456175267577922, −20.3928944054339856759698593663, −19.62436589932990320729742990573, −18.80100892062234059457756583872, −18.32853542006788229279395808549, −17.5016166493931181266320759240, −16.72780129002141581973772534349, −16.3946437424932938812139247532, −14.87367443138706356356472375683, −14.27626346873326793276352095878, −13.69767663986593503005319659759, −12.2435013168959398005015614692, −11.495842555426252599268628855803, −11.168238265191537322419448632853, −9.83256104290033052412212222279, −9.05808089780044091999284269689, −7.97561271956484536596554037654, −7.62631297341765208172426349760, −6.61078561480142267642444225803, −5.94246148536690275962578878507, −4.92840499504182083296293089112, −3.49505858431665177253039668718, −1.75763783384445460319459557010, −1.64115491233879281378945082507, −0.34342866309464827779094207968,
0.96304441224417230497028102388, 2.07431408390632773086920031989, 3.26888786467443438464960060631, 4.06759106607820470479737004057, 5.20367305418808792271378221846, 6.12312290422530435337604482659, 7.26889245866864990647357079916, 8.39373111730218515980595208298, 8.80450269313965253697986932888, 9.80969892154336584062892323597, 10.53041168253898048906228450129, 11.22464160695276321796932964241, 11.93704100133969833320757667472, 12.71929062290899224733445881283, 14.227468423970385751418305646150, 15.02477129576709561703634216629, 15.57707948570980658015886009199, 16.63628350835505374453671107083, 17.2267081060802098059525423746, 17.829727961467716377063862137860, 18.64431796998376688093169574334, 19.82469545445068134342740990764, 20.27396956455196269370417953259, 21.01133440253363342635515979935, 21.91161380890986044057170433872