| L(s) = 1 | + (0.104 − 0.994i)2-s + (0.207 − 0.978i)3-s + (−0.978 − 0.207i)4-s + (−0.951 − 0.309i)6-s + (−0.866 − 0.5i)7-s + (−0.309 + 0.951i)8-s + (−0.913 − 0.406i)9-s + (0.809 + 0.587i)11-s + (−0.406 + 0.913i)12-s + (0.104 + 0.994i)13-s + (−0.587 + 0.809i)14-s + (0.913 + 0.406i)16-s + (−0.978 + 0.207i)17-s + (−0.5 + 0.866i)18-s + (−0.743 + 0.669i)19-s + ⋯ |
| L(s) = 1 | + (0.104 − 0.994i)2-s + (0.207 − 0.978i)3-s + (−0.978 − 0.207i)4-s + (−0.951 − 0.309i)6-s + (−0.866 − 0.5i)7-s + (−0.309 + 0.951i)8-s + (−0.913 − 0.406i)9-s + (0.809 + 0.587i)11-s + (−0.406 + 0.913i)12-s + (0.104 + 0.994i)13-s + (−0.587 + 0.809i)14-s + (0.913 + 0.406i)16-s + (−0.978 + 0.207i)17-s + (−0.5 + 0.866i)18-s + (−0.743 + 0.669i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.839 - 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.839 - 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8660125070 - 0.2557259994i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8660125070 - 0.2557259994i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7183144653 - 0.5146904473i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7183144653 - 0.5146904473i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
| good | 2 | \( 1 + (0.104 - 0.994i)T \) |
| 3 | \( 1 + (0.207 - 0.978i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.104 + 0.994i)T \) |
| 17 | \( 1 + (-0.978 + 0.207i)T \) |
| 19 | \( 1 + (-0.743 + 0.669i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (0.951 - 0.309i)T \) |
| 31 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.104 + 0.994i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.743 - 0.669i)T \) |
| 59 | \( 1 + (-0.406 + 0.913i)T \) |
| 61 | \( 1 + (0.406 + 0.913i)T \) |
| 67 | \( 1 + (0.743 - 0.669i)T \) |
| 71 | \( 1 + (-0.978 - 0.207i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.207 - 0.978i)T \) |
| 83 | \( 1 + (0.207 + 0.978i)T \) |
| 89 | \( 1 + (0.994 + 0.104i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.97429313369131222624122395758, −21.59579882829350088963294165073, −20.3696258764887369814496668149, −19.50346502516681478301577506914, −18.83293609923648761103946156991, −17.60792853169337357443522543169, −17.06141575272669021585884361811, −16.17332286656472036773251890674, −15.558088989952175306577897931149, −15.07574015995970759655031869757, −14.141286189536191794144454834178, −13.3300300677186464455586635707, −12.54914853251860698516472281801, −11.33548743815475406883726523978, −10.34269798997003700805585373506, −9.49656368942234231206327285752, −8.72927769434645736542034928828, −8.32078525009325373318832266816, −6.770154465193829851358944492371, −6.2508503396592986515255313471, −5.23446524416373016292604377561, −4.454913104740127638727051850917, −3.44812251426960445919535181157, −2.72052829024254368349178393491, −0.41732649128205744162575043431,
1.14819339912787303597692275436, 1.93442661705180828247347432523, 2.96432646299771962189065170866, 3.89483862758051160282977608062, 4.75016243729427990825320729021, 6.39450569413059338618677206333, 6.61428989577476543370859933723, 7.95557511218110273699397888302, 8.917042275023814769236647043544, 9.53392215941463817608677895269, 10.51805571400800154518454148066, 11.557054858733449767908810290811, 12.1026364781531096881302885075, 13.01423302482843700045510819785, 13.48561007450545775346671515666, 14.29970427513097945736601418116, 15.09125574988301783879416125376, 16.55411388070960961363221810350, 17.326127234082408186923763723637, 17.95818763319508384944360608909, 19.06934464719334940968941404930, 19.40290115224826646206146019825, 19.95372811179196452988533579062, 20.88700175347102965608337249333, 21.726428987704406159337106417980