| L(s) = 1 | + (0.927 − 0.374i)2-s + (−0.241 − 0.970i)3-s + (0.719 − 0.694i)4-s + (−0.587 − 0.809i)6-s + (0.939 − 0.342i)7-s + (0.406 − 0.913i)8-s + (−0.882 + 0.469i)9-s + (0.978 − 0.207i)11-s + (−0.848 − 0.529i)12-s + (−0.139 − 0.990i)13-s + (0.743 − 0.669i)14-s + (0.0348 − 0.999i)16-s + (−0.694 + 0.719i)17-s + (−0.642 + 0.766i)18-s + (0.0697 − 0.997i)19-s + ⋯ |
| L(s) = 1 | + (0.927 − 0.374i)2-s + (−0.241 − 0.970i)3-s + (0.719 − 0.694i)4-s + (−0.587 − 0.809i)6-s + (0.939 − 0.342i)7-s + (0.406 − 0.913i)8-s + (−0.882 + 0.469i)9-s + (0.978 − 0.207i)11-s + (−0.848 − 0.529i)12-s + (−0.139 − 0.990i)13-s + (0.743 − 0.669i)14-s + (0.0348 − 0.999i)16-s + (−0.694 + 0.719i)17-s + (−0.642 + 0.766i)18-s + (0.0697 − 0.997i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.987 - 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.987 - 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3229133696 - 4.154960239i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3229133696 - 4.154960239i\) |
| \(L(1)\) |
\(\approx\) |
\(1.394698726 - 1.410712783i\) |
| \(L(1)\) |
\(\approx\) |
\(1.394698726 - 1.410712783i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
| good | 2 | \( 1 + (0.927 - 0.374i)T \) |
| 3 | \( 1 + (-0.241 - 0.970i)T \) |
| 7 | \( 1 + (0.939 - 0.342i)T \) |
| 11 | \( 1 + (0.978 - 0.207i)T \) |
| 13 | \( 1 + (-0.139 - 0.990i)T \) |
| 17 | \( 1 + (-0.694 + 0.719i)T \) |
| 19 | \( 1 + (0.0697 - 0.997i)T \) |
| 23 | \( 1 + (0.743 - 0.669i)T \) |
| 29 | \( 1 + (0.994 + 0.104i)T \) |
| 31 | \( 1 + (0.587 + 0.809i)T \) |
| 41 | \( 1 + (-0.990 + 0.139i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.913 + 0.406i)T \) |
| 53 | \( 1 + (-0.559 - 0.829i)T \) |
| 59 | \( 1 + (0.999 + 0.0348i)T \) |
| 61 | \( 1 + (-0.469 + 0.882i)T \) |
| 67 | \( 1 + (0.559 - 0.829i)T \) |
| 71 | \( 1 + (-0.241 - 0.970i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.275 + 0.961i)T \) |
| 83 | \( 1 + (0.719 + 0.694i)T \) |
| 89 | \( 1 + (0.788 + 0.615i)T \) |
| 97 | \( 1 + (-0.406 - 0.913i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.82798011282349120474354421679, −21.57928282686260741192407904429, −20.68328868716986785872504475368, −20.147938536038874464453667228737, −18.98070901679268521647692684820, −17.638468528954945456443227458379, −17.15713124568049529746897834911, −16.32634032555158290295399238975, −15.603478729397976869926881293636, −14.74392264243472454636888593957, −14.34779587290653977327298119611, −13.51118204835964811003421857455, −12.09845784483411276963977372557, −11.64408712700857016751547656263, −11.10342777965197895729177358108, −9.83822119726435794302656828586, −8.93848322858063074415498723091, −8.10727953924728188466931154957, −6.9034264005145828860051566729, −6.14155774619284074065450304990, −5.103373359762239259923711119166, −4.527964316221778628473271891374, −3.80284508227892759903808257194, −2.662458367162756718707521226723, −1.515131610398226354161591705376,
0.64999557457313559562469164346, 1.40561254520246811030512921433, 2.40063543113879210938250873071, 3.39223363531886478920764275260, 4.65320398859350842656668557635, 5.24108139588001964439408912678, 6.471009083881017445506210700482, 6.850728065711479722676380728665, 8.01092000641260117569903869768, 8.83359575635725427909973509834, 10.39202553452279698249354506230, 11.001270579187209299734219126, 11.73730817813316413036128170812, 12.4574922211490283320921559625, 13.28343561695319027572175016305, 13.91795343353613431984221770188, 14.69855431925603847801831144412, 15.38871099700791157459339623010, 16.66169877988257504615180770183, 17.474454708993785487333475431196, 18.04942531909673469667702070675, 19.29372956456013508133150199097, 19.71231540883132846416533364656, 20.43750121723217149132276290067, 21.39476677713174532747357306800