| L(s) = 1 | + (−0.990 + 0.139i)2-s + (0.694 − 0.719i)3-s + (0.961 − 0.275i)4-s + (−0.587 + 0.809i)6-s + (0.642 + 0.766i)7-s + (−0.913 + 0.406i)8-s + (−0.0348 − 0.999i)9-s + (0.978 + 0.207i)11-s + (0.469 − 0.882i)12-s + (0.615 − 0.788i)13-s + (−0.743 − 0.669i)14-s + (0.848 − 0.529i)16-s + (0.961 + 0.275i)17-s + (0.173 + 0.984i)18-s + (0.898 + 0.438i)19-s + ⋯ |
| L(s) = 1 | + (−0.990 + 0.139i)2-s + (0.694 − 0.719i)3-s + (0.961 − 0.275i)4-s + (−0.587 + 0.809i)6-s + (0.642 + 0.766i)7-s + (−0.913 + 0.406i)8-s + (−0.0348 − 0.999i)9-s + (0.978 + 0.207i)11-s + (0.469 − 0.882i)12-s + (0.615 − 0.788i)13-s + (−0.743 − 0.669i)14-s + (0.848 − 0.529i)16-s + (0.961 + 0.275i)17-s + (0.173 + 0.984i)18-s + (0.898 + 0.438i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.348i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.348i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.502082883 - 0.2699329254i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.502082883 - 0.2699329254i\) |
| \(L(1)\) |
\(\approx\) |
\(1.067225959 - 0.1334781642i\) |
| \(L(1)\) |
\(\approx\) |
\(1.067225959 - 0.1334781642i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
| good | 2 | \( 1 + (-0.990 + 0.139i)T \) |
| 3 | \( 1 + (0.694 - 0.719i)T \) |
| 7 | \( 1 + (0.642 + 0.766i)T \) |
| 11 | \( 1 + (0.978 + 0.207i)T \) |
| 13 | \( 1 + (0.615 - 0.788i)T \) |
| 17 | \( 1 + (0.961 + 0.275i)T \) |
| 19 | \( 1 + (0.898 + 0.438i)T \) |
| 23 | \( 1 + (-0.669 + 0.743i)T \) |
| 29 | \( 1 + (-0.994 + 0.104i)T \) |
| 31 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.615 - 0.788i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.406 + 0.913i)T \) |
| 53 | \( 1 + (-0.0697 + 0.997i)T \) |
| 59 | \( 1 + (0.529 + 0.848i)T \) |
| 61 | \( 1 + (0.999 + 0.0348i)T \) |
| 67 | \( 1 + (0.0697 + 0.997i)T \) |
| 71 | \( 1 + (-0.719 - 0.694i)T \) |
| 73 | \( 1 + (-0.951 + 0.309i)T \) |
| 79 | \( 1 + (-0.970 - 0.241i)T \) |
| 83 | \( 1 + (0.275 - 0.961i)T \) |
| 89 | \( 1 + (0.927 + 0.374i)T \) |
| 97 | \( 1 + (0.913 + 0.406i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.54089097002229594879731286757, −20.92364620797402824445959075738, −20.25524228063244342359496355413, −19.68288807172835484778862296917, −18.83245729974275908633432755697, −18.03669467573272735980183348132, −16.99642373128306073518915755638, −16.45463556921944346136014528882, −15.853795671609363898988895324214, −14.59539033830988526645034426456, −14.27584392103015502761292242378, −13.231034824839842279418400973632, −11.705330147608245791664001569306, −11.370942513109755238300770009038, −10.29514919900664027848323379221, −9.71264357949678200340460451430, −8.8536680173236633216704005553, −8.18030055557652665796575202391, −7.34674727961184177682480003198, −6.444086864853910191289898317477, −5.07776832353764776247862836056, −3.92230266517985931662277169490, −3.30409524470372074870151160006, −1.98590831892812742413889166972, −1.10692953373339159955917586375,
1.15505512684873916608135407255, 1.720331783779276494370272269132, 2.85049181000625577070465010548, 3.76797114841787584186406715166, 5.635694939889816559092826881698, 6.090733309556618375147426845879, 7.3959642490739278539225667955, 7.85753335144213097403808850237, 8.67042956464636155933189848019, 9.377498248119354433487364309029, 10.18201979147894645004606151346, 11.57094762422875029895039298727, 11.87018826030065742935912304461, 12.87281997853617217260506258566, 14.081556225271726015737906788793, 14.74586474334097224458455417148, 15.3810080190141331524085867196, 16.33161779936293664905813431006, 17.48859409113326412845429779988, 17.85641012773321334933279605675, 18.782308205949116612549825472097, 19.15226982584666136204087211930, 20.308063264259375178712874080713, 20.55058197854084240257770610219, 21.55439089438760101866893432416