| L(s) = 1 | + (−0.374 + 0.927i)2-s + (−0.241 + 0.970i)3-s + (−0.719 − 0.694i)4-s + (−0.809 − 0.587i)6-s + (−0.939 − 0.342i)7-s + (0.913 − 0.406i)8-s + (−0.882 − 0.469i)9-s + (−0.978 − 0.207i)11-s + (0.848 − 0.529i)12-s + (0.990 + 0.139i)13-s + (0.669 − 0.743i)14-s + (0.0348 + 0.999i)16-s + (−0.719 + 0.694i)17-s + (0.766 − 0.642i)18-s + (−0.997 + 0.0697i)19-s + ⋯ |
| L(s) = 1 | + (−0.374 + 0.927i)2-s + (−0.241 + 0.970i)3-s + (−0.719 − 0.694i)4-s + (−0.809 − 0.587i)6-s + (−0.939 − 0.342i)7-s + (0.913 − 0.406i)8-s + (−0.882 − 0.469i)9-s + (−0.978 − 0.207i)11-s + (0.848 − 0.529i)12-s + (0.990 + 0.139i)13-s + (0.669 − 0.743i)14-s + (0.0348 + 0.999i)16-s + (−0.719 + 0.694i)17-s + (0.766 − 0.642i)18-s + (−0.997 + 0.0697i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0367 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0367 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4467266838 + 0.4634774610i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4467266838 + 0.4634774610i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5097724951 + 0.3553560916i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5097724951 + 0.3553560916i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
| good | 2 | \( 1 + (-0.374 + 0.927i)T \) |
| 3 | \( 1 + (-0.241 + 0.970i)T \) |
| 7 | \( 1 + (-0.939 - 0.342i)T \) |
| 11 | \( 1 + (-0.978 - 0.207i)T \) |
| 13 | \( 1 + (0.990 + 0.139i)T \) |
| 17 | \( 1 + (-0.719 + 0.694i)T \) |
| 19 | \( 1 + (-0.997 + 0.0697i)T \) |
| 23 | \( 1 + (0.669 - 0.743i)T \) |
| 29 | \( 1 + (-0.104 - 0.994i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.990 + 0.139i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.913 + 0.406i)T \) |
| 53 | \( 1 + (0.559 - 0.829i)T \) |
| 59 | \( 1 + (0.0348 + 0.999i)T \) |
| 61 | \( 1 + (-0.882 + 0.469i)T \) |
| 67 | \( 1 + (0.559 + 0.829i)T \) |
| 71 | \( 1 + (-0.241 + 0.970i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (0.961 - 0.275i)T \) |
| 83 | \( 1 + (-0.719 + 0.694i)T \) |
| 89 | \( 1 + (-0.615 - 0.788i)T \) |
| 97 | \( 1 + (0.913 + 0.406i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.62234825940911019015751716181, −20.73410239579603446118055917318, −19.89453528082363139479407387583, −19.29129022324301041667331127638, −18.418058154245149811850175687061, −18.15669139622197185041358882104, −17.18942186211274307426919710529, −16.29550216638185908561240879757, −15.46231988192245087250032084720, −14.017480558924104254158992504602, −13.25050550835025518028725230905, −12.79616301356619699424899877049, −12.153941045245433386409163895741, −10.90649825349345224861399990427, −10.75062638626114209605779618462, −9.25974310472783946032479921899, −8.78955766560136697046025244143, −7.71569682776344496073150306471, −6.9375793656711181990624503757, −5.87225713244022230157548580030, −4.92231426550957840515588866354, −3.53224694963674703869552615535, −2.69970726134731804436298312248, −1.89697806986779626676524053327, −0.612999411695432378950883655382,
0.60873704873071253402858671047, 2.53070141572301243885167339077, 3.920410718029057270550277646676, 4.379928351512257632525115573070, 5.753836735539949842271569711803, 6.09741438574715399309939868962, 7.13234349913462284893847424554, 8.343734125987756840886573174207, 8.91748156880567193034080042890, 9.80514383273508183004201803589, 10.65286826738104127702244421726, 11.015621281166881614034801903678, 12.77756789465011465962999632706, 13.31083641102038209470841844386, 14.33469265893290417557892460816, 15.29960109514741863345076383036, 15.708210599461786042260930639315, 16.5037336806988105070694411355, 17.0189478476894409542496128330, 17.93174753494106042045799742654, 18.84956586075908098731594906573, 19.53847428012999860923679030267, 20.57962028908355733743680874924, 21.32510610953526574556175620713, 22.305454384421115749518781727321