L(s) = 1 | + (−0.980 − 0.195i)3-s + (−0.555 + 0.831i)5-s + (0.923 + 0.382i)9-s + (0.195 + 0.980i)11-s + (0.555 + 0.831i)13-s + (0.707 − 0.707i)15-s + (0.707 + 0.707i)17-s + (−0.831 + 0.555i)19-s + (−0.382 + 0.923i)23-s + (−0.382 − 0.923i)25-s + (−0.831 − 0.555i)27-s + (0.195 − 0.980i)29-s − i·31-s − i·33-s + (0.831 + 0.555i)37-s + ⋯ |
L(s) = 1 | + (−0.980 − 0.195i)3-s + (−0.555 + 0.831i)5-s + (0.923 + 0.382i)9-s + (0.195 + 0.980i)11-s + (0.555 + 0.831i)13-s + (0.707 − 0.707i)15-s + (0.707 + 0.707i)17-s + (−0.831 + 0.555i)19-s + (−0.382 + 0.923i)23-s + (−0.382 − 0.923i)25-s + (−0.831 − 0.555i)27-s + (0.195 − 0.980i)29-s − i·31-s − i·33-s + (0.831 + 0.555i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2966904685 + 0.6693229723i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2966904685 + 0.6693229723i\) |
\(L(1)\) |
\(\approx\) |
\(0.6715673243 + 0.2472327047i\) |
\(L(1)\) |
\(\approx\) |
\(0.6715673243 + 0.2472327047i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.980 - 0.195i)T \) |
| 5 | \( 1 + (-0.555 + 0.831i)T \) |
| 11 | \( 1 + (0.195 + 0.980i)T \) |
| 13 | \( 1 + (0.555 + 0.831i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
| 19 | \( 1 + (-0.831 + 0.555i)T \) |
| 23 | \( 1 + (-0.382 + 0.923i)T \) |
| 29 | \( 1 + (0.195 - 0.980i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (0.831 + 0.555i)T \) |
| 41 | \( 1 + (0.382 - 0.923i)T \) |
| 43 | \( 1 + (0.980 - 0.195i)T \) |
| 47 | \( 1 + (0.707 + 0.707i)T \) |
| 53 | \( 1 + (0.195 + 0.980i)T \) |
| 59 | \( 1 + (-0.555 + 0.831i)T \) |
| 61 | \( 1 + (-0.980 - 0.195i)T \) |
| 67 | \( 1 + (-0.980 - 0.195i)T \) |
| 71 | \( 1 + (-0.923 + 0.382i)T \) |
| 73 | \( 1 + (0.923 + 0.382i)T \) |
| 79 | \( 1 + (-0.707 + 0.707i)T \) |
| 83 | \( 1 + (0.831 - 0.555i)T \) |
| 89 | \( 1 + (-0.382 - 0.923i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.62576576292608941834584396514, −21.00666527998996751182213841035, −20.1340790447037787877216254219, −19.29270142816045384500046324581, −18.355901655966127371921551942129, −17.68844106413351765714786520010, −16.56551313146703925340703878021, −16.35039351832326951103780087791, −15.57176505928702496158249564278, −14.55699812769350766215164112337, −13.37852288177987032028748354801, −12.61397475612236348210514506509, −12.00105067824307132999126120225, −11.04725208915142336562205685045, −10.54950937340418950987638630620, −9.31542439297430103046284072879, −8.535770994523907982275273173384, −7.63869533635001276162702962441, −6.512002007291310470170429181253, −5.67876387309237578706940006202, −4.90767673874091664833822496384, −4.04383053335849467556927069951, −3.035297542007409471110064547033, −1.246684761958857448632943030504, −0.43830365295492802205698099378,
1.36415841740343494259727773596, 2.37901231895029041828920519292, 4.00154489500898366813622949007, 4.28280022924751240903453869546, 5.87177505507086018251155645765, 6.29729953574686437031286183169, 7.37754941861496277809192151217, 7.86827088426668482412487463727, 9.3465209060616553917331742952, 10.26676811955441936520354189871, 10.897162692793643509615143992373, 11.82582752674315498370711343129, 12.243702548302152696806468278921, 13.31550011987740834228351286931, 14.30620817789313113038485541955, 15.206152809593998952797063452416, 15.801729585654728812236326964714, 16.881167611357043917359288857627, 17.38383074546460944153953564369, 18.40409179255965287321606881268, 18.91056818893781615038154610918, 19.61163706953782546714949610257, 20.86182353544190779985670497302, 21.57630432510717446829622649898, 22.4160935437094681286251223103