| L(s) = 1 | + (0.459 − 0.888i)2-s + (−0.578 − 0.815i)4-s + (−0.795 + 0.606i)5-s + (−0.750 − 0.660i)7-s + (−0.990 + 0.139i)8-s + (0.173 + 0.984i)10-s + (0.352 − 0.935i)13-s + (−0.931 + 0.363i)14-s + (−0.331 + 0.943i)16-s + (−0.559 − 0.829i)17-s + (−0.615 − 0.788i)19-s + (0.954 + 0.297i)20-s + (−0.396 − 0.918i)23-s + (0.264 − 0.964i)25-s + (−0.669 − 0.743i)26-s + ⋯ |
| L(s) = 1 | + (0.459 − 0.888i)2-s + (−0.578 − 0.815i)4-s + (−0.795 + 0.606i)5-s + (−0.750 − 0.660i)7-s + (−0.990 + 0.139i)8-s + (0.173 + 0.984i)10-s + (0.352 − 0.935i)13-s + (−0.931 + 0.363i)14-s + (−0.331 + 0.943i)16-s + (−0.559 − 0.829i)17-s + (−0.615 − 0.788i)19-s + (0.954 + 0.297i)20-s + (−0.396 − 0.918i)23-s + (0.264 − 0.964i)25-s + (−0.669 − 0.743i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.680 + 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.680 + 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2357416463 - 0.1028850795i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.2357416463 - 0.1028850795i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5800863637 - 0.5328220513i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5800863637 - 0.5328220513i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (0.459 - 0.888i)T \) |
| 5 | \( 1 + (-0.795 + 0.606i)T \) |
| 7 | \( 1 + (-0.750 - 0.660i)T \) |
| 13 | \( 1 + (0.352 - 0.935i)T \) |
| 17 | \( 1 + (-0.559 - 0.829i)T \) |
| 19 | \( 1 + (-0.615 - 0.788i)T \) |
| 23 | \( 1 + (-0.396 - 0.918i)T \) |
| 29 | \( 1 + (-0.931 - 0.363i)T \) |
| 31 | \( 1 + (0.871 - 0.489i)T \) |
| 37 | \( 1 + (-0.374 - 0.927i)T \) |
| 41 | \( 1 + (0.150 - 0.988i)T \) |
| 43 | \( 1 + (-0.686 + 0.727i)T \) |
| 47 | \( 1 + (0.417 + 0.908i)T \) |
| 53 | \( 1 + (-0.913 - 0.406i)T \) |
| 59 | \( 1 + (-0.0813 + 0.996i)T \) |
| 61 | \( 1 + (-0.0116 - 0.999i)T \) |
| 67 | \( 1 + (-0.0581 - 0.998i)T \) |
| 71 | \( 1 + (-0.438 + 0.898i)T \) |
| 73 | \( 1 + (-0.882 - 0.469i)T \) |
| 79 | \( 1 + (-0.459 + 0.888i)T \) |
| 83 | \( 1 + (0.986 + 0.162i)T \) |
| 89 | \( 1 + (-0.173 + 0.984i)T \) |
| 97 | \( 1 + (0.795 + 0.606i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.553400284797528284225366829343, −21.80602509963721390532270727188, −21.12654981184102399733013037451, −20.103005199106531404509434473053, −19.10131160237779472024790652811, −18.62229812967949569595175568818, −17.38501722814970642938164020343, −16.6641567936786533932450977421, −16.00898578114201653323263177336, −15.376663714964246284064673165510, −14.69393218349098367892223858942, −13.52275491792947834096930729285, −12.92112053092271062387587371895, −12.09568616144483942227288631724, −11.51914668424786564576224616602, −10.023872135860688349661145772862, −8.907176780508405726943206691881, −8.55528311160424531015697744563, −7.54522769432131607202295685387, −6.55083931689020122009301633854, −5.89307916866382573972459692264, −4.83058438263263996180220976313, −3.956749732111202053781762059301, −3.279737988633801349837333519238, −1.725756443346567030377201966782,
0.07337715629918448912797241797, 0.65613063834634029515453167282, 2.367327185153706447726130622866, 3.10804887335200843914242093901, 3.96160094307471116057941236166, 4.68677134570331645519011752305, 6.017042890023162689438578987960, 6.78924588113025913233379874578, 7.82128464651028004784697145558, 8.92079605380711999554762713792, 9.88450721777700612140856216645, 10.73284963924905548429177077050, 11.15357672929292648150963948616, 12.201981997393807217423334873326, 12.96665429795134861873694973731, 13.663360248655136197361164972672, 14.54208858503518722691098910829, 15.44196304721545911377021239553, 15.98497959034919787373335537105, 17.30153175727825823026878778982, 18.17263256074333930243211337323, 18.959354292805591040186687803154, 19.60668426919139378212375299497, 20.25876586958813159227620348345, 20.888510558783954743984313514987