| L(s)  = 1  |         + (−0.5 + 0.866i)5-s             + (−0.5 − 0.866i)11-s     − 13-s         + (−0.5 − 0.866i)17-s     + (−0.5 + 0.866i)19-s         + (−0.5 + 0.866i)23-s     + (−0.5 − 0.866i)25-s         − 29-s     + (−0.5 − 0.866i)31-s             + (−0.5 + 0.866i)37-s         + 41-s     − 43-s         + (0.5 − 0.866i)47-s             + (0.5 + 0.866i)53-s     + 55-s    + ⋯ | 
 
| L(s)  = 1  |         + (−0.5 + 0.866i)5-s             + (−0.5 − 0.866i)11-s     − 13-s         + (−0.5 − 0.866i)17-s     + (−0.5 + 0.866i)19-s         + (−0.5 + 0.866i)23-s     + (−0.5 − 0.866i)25-s         − 29-s     + (−0.5 − 0.866i)31-s             + (−0.5 + 0.866i)37-s         + 41-s     − 43-s         + (0.5 − 0.866i)47-s             + (0.5 + 0.866i)53-s     + 55-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.006754813381 + 0.1064417541i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.006754813381 + 0.1064417541i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.6800521676 + 0.08666147500i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.6800521676 + 0.08666147500i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 \)  | 
 | 7 |  \( 1 \)  | 
| good | 5 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 11 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 13 |  \( 1 - T \)  | 
 | 17 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 19 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 23 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 29 |  \( 1 - T \)  | 
 | 31 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 37 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 41 |  \( 1 + T \)  | 
 | 43 |  \( 1 - T \)  | 
 | 47 |  \( 1 + (0.5 - 0.866i)T \)  | 
 | 53 |  \( 1 + (0.5 + 0.866i)T \)  | 
 | 59 |  \( 1 + (0.5 + 0.866i)T \)  | 
 | 61 |  \( 1 + (0.5 - 0.866i)T \)  | 
 | 67 |  \( 1 + (0.5 + 0.866i)T \)  | 
 | 71 |  \( 1 + T \)  | 
 | 73 |  \( 1 + (0.5 + 0.866i)T \)  | 
 | 79 |  \( 1 + (0.5 - 0.866i)T \)  | 
 | 83 |  \( 1 - T \)  | 
 | 89 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 97 |  \( 1 - T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−30.09296175832345639199155775443, −28.65921755634291119545043499734, −28.099491438132979578758630321215, −26.86331676015131759196298587798, −25.78823321894642643506319547038, −24.46922636919233841358942839252, −23.7779853120497779139569344696, −22.54765733549928465050606102517, −21.305418146443683504065837110708, −20.14869875112966893968664001674, −19.419762110180769379467468843422, −17.852319489178950777930957223455, −16.87114664580238510006331928516, −15.67150163533345167330992235800, −14.68632243733093243005915353251, −12.96616556643733607538851601057, −12.33242283594329911685870217437, −10.845546833591945450101878187493, −9.45249196327773318171175531821, −8.24501634381663701308683613511, −7.02048814094043550062814007489, −5.20410232001639393310358722381, −4.150675981361680424033891692212, −2.125351501808838728582535582363, −0.04679959096731799967284018353, 
2.46845435737195258379327043307, 3.837389875079354389370214599208, 5.566062373968980361548994344431, 7.042766592911424033333627921150, 8.09189499551442968009325324501, 9.73173819572569088801931885433, 10.95208971904920178626871227717, 11.93862849492322997468076996313, 13.468581525233280518369833769850, 14.61502516102634747192292200952, 15.636932014297276923314171481569, 16.84995099555567988036650204426, 18.28238996385279043486707097944, 19.06418132110776230625937436484, 20.2128353107232475339331239671, 21.62518396146473215930300063324, 22.49470919995170236391305571967, 23.60447507797590863350105021056, 24.64021827284966783671935212404, 26.00743259798001839000742870384, 26.8644839995237322297507010017, 27.69773568100531439319707441164, 29.34777381821147052864462108326, 29.80766252183609808358544132990, 31.368674511005381227840381420673