L(s) = 1 | + (−0.916 + 0.399i)2-s + (−0.949 + 0.312i)3-s + (0.680 − 0.733i)4-s + (−0.978 − 0.204i)5-s + (0.745 − 0.666i)6-s + (−0.330 + 0.943i)8-s + (0.804 − 0.593i)9-s + (0.978 − 0.204i)10-s + (0.240 − 0.970i)11-s + (−0.416 + 0.908i)12-s + (−0.781 + 0.623i)13-s + (0.993 − 0.111i)15-s + (−0.0747 − 0.997i)16-s + (−0.5 + 0.866i)18-s + (0.258 − 0.965i)19-s + (−0.815 + 0.578i)20-s + ⋯ |
L(s) = 1 | + (−0.916 + 0.399i)2-s + (−0.949 + 0.312i)3-s + (0.680 − 0.733i)4-s + (−0.978 − 0.204i)5-s + (0.745 − 0.666i)6-s + (−0.330 + 0.943i)8-s + (0.804 − 0.593i)9-s + (0.978 − 0.204i)10-s + (0.240 − 0.970i)11-s + (−0.416 + 0.908i)12-s + (−0.781 + 0.623i)13-s + (0.993 − 0.111i)15-s + (−0.0747 − 0.997i)16-s + (−0.5 + 0.866i)18-s + (0.258 − 0.965i)19-s + (−0.815 + 0.578i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.600 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.600 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08411104140 - 0.1683021896i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08411104140 - 0.1683021896i\) |
\(L(1)\) |
\(\approx\) |
\(0.3974532808 + 0.01423206071i\) |
\(L(1)\) |
\(\approx\) |
\(0.3974532808 + 0.01423206071i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.916 + 0.399i)T \) |
| 3 | \( 1 + (-0.949 + 0.312i)T \) |
| 5 | \( 1 + (-0.978 - 0.204i)T \) |
| 11 | \( 1 + (0.240 - 0.970i)T \) |
| 13 | \( 1 + (-0.781 + 0.623i)T \) |
| 19 | \( 1 + (0.258 - 0.965i)T \) |
| 23 | \( 1 + (0.0933 - 0.995i)T \) |
| 29 | \( 1 + (0.578 + 0.815i)T \) |
| 31 | \( 1 + (-0.991 - 0.130i)T \) |
| 37 | \( 1 + (-0.908 - 0.416i)T \) |
| 41 | \( 1 + (0.998 - 0.0560i)T \) |
| 43 | \( 1 + (0.943 - 0.330i)T \) |
| 47 | \( 1 + (0.930 + 0.365i)T \) |
| 53 | \( 1 + (0.0373 + 0.999i)T \) |
| 59 | \( 1 + (-0.185 + 0.982i)T \) |
| 61 | \( 1 + (-0.937 + 0.347i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.985 + 0.167i)T \) |
| 73 | \( 1 + (-0.693 - 0.720i)T \) |
| 79 | \( 1 + (0.991 - 0.130i)T \) |
| 83 | \( 1 + (-0.993 + 0.111i)T \) |
| 89 | \( 1 + (-0.149 + 0.988i)T \) |
| 97 | \( 1 + (0.923 - 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.553409629417757764695405488736, −21.67091234973864571594613818166, −20.62510678171040720341784836306, −19.82552946994330230217723644195, −19.179293548914958478980251666170, −18.45804205703431901945726040361, −17.56559691133546182110455327878, −17.169812958555695458464377783146, −16.08395929001246352692478269817, −15.581489380853769246026959240888, −14.587587215851409852726067169569, −13.01274089567625575119524407137, −12.23638492307755987205536001216, −11.88984542830539917129845425416, −10.95922630875109233460501820458, −10.21984478052872775458376400995, −9.46086044577357396542250600801, −8.08325036177074597323322437929, −7.46826523148173306942382928229, −6.915272534381995617264921357323, −5.70866483935695141580047256513, −4.503748972901171146138989156293, −3.54637202755303666846425087611, −2.26673358878264759006114026590, −1.154052272428551980783246246,
0.17002859229183873804259742123, 1.16543550617846499553035334323, 2.790902998509038334756519459310, 4.16203718762717660832447887538, 5.03528932610618773747654219563, 5.98810443160960627477878208874, 6.97298245495857078084339004151, 7.50996533528621484295364997719, 8.844717619238967103572304320331, 9.215984383777470968338433673447, 10.64414725765523024926050772049, 10.951305681511109417672018229285, 11.896534044688656817151797926577, 12.472355510093350620540679008532, 14.04847506183551544198963164328, 14.95494373064565497970480121382, 15.78633652771842205202563878574, 16.37801440714010052728776692306, 16.88556073259639254813643785652, 17.78085219827761290192892626391, 18.65295801551021872641772368059, 19.30728705745950412602652792634, 20.03853247087912526207162988323, 21.030863380241109114365288477684, 21.96048050369612737076028376714