L(s) = 1 | + (−0.793 + 0.608i)3-s + (0.382 + 0.923i)5-s + (0.965 + 0.258i)7-s + (0.258 − 0.965i)9-s + (−0.130 + 0.991i)11-s + (−0.866 − 0.5i)15-s + (0.866 − 0.5i)17-s + (0.991 − 0.130i)19-s + (−0.923 + 0.382i)21-s + (0.965 − 0.258i)23-s + (−0.707 + 0.707i)25-s + (0.382 + 0.923i)27-s + (0.793 − 0.608i)29-s + 31-s + (−0.5 − 0.866i)33-s + ⋯ |
L(s) = 1 | + (−0.793 + 0.608i)3-s + (0.382 + 0.923i)5-s + (0.965 + 0.258i)7-s + (0.258 − 0.965i)9-s + (−0.130 + 0.991i)11-s + (−0.866 − 0.5i)15-s + (0.866 − 0.5i)17-s + (0.991 − 0.130i)19-s + (−0.923 + 0.382i)21-s + (0.965 − 0.258i)23-s + (−0.707 + 0.707i)25-s + (0.382 + 0.923i)27-s + (0.793 − 0.608i)29-s + 31-s + (−0.5 − 0.866i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.170240437 + 0.9166009064i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.170240437 + 0.9166009064i\) |
\(L(1)\) |
\(\approx\) |
\(1.007783015 + 0.4151094217i\) |
\(L(1)\) |
\(\approx\) |
\(1.007783015 + 0.4151094217i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.793 + 0.608i)T \) |
| 5 | \( 1 + (0.382 + 0.923i)T \) |
| 7 | \( 1 + (0.965 + 0.258i)T \) |
| 11 | \( 1 + (-0.130 + 0.991i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.991 - 0.130i)T \) |
| 23 | \( 1 + (0.965 - 0.258i)T \) |
| 29 | \( 1 + (0.793 - 0.608i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.991 + 0.130i)T \) |
| 41 | \( 1 + (-0.965 + 0.258i)T \) |
| 43 | \( 1 + (-0.793 - 0.608i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.923 + 0.382i)T \) |
| 59 | \( 1 + (0.608 - 0.793i)T \) |
| 61 | \( 1 + (-0.130 - 0.991i)T \) |
| 67 | \( 1 + (0.793 - 0.608i)T \) |
| 71 | \( 1 + (0.965 + 0.258i)T \) |
| 73 | \( 1 + (-0.707 - 0.707i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (-0.382 + 0.923i)T \) |
| 89 | \( 1 + (0.258 + 0.965i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.78478956096077774298867893299, −21.32994579689292108201199711387, −20.50213460952264812463414282313, −19.51490483973111138511956704229, −18.67695144404241724934201521437, −17.85964277525553615710809760176, −17.19296270962182246649822024460, −16.5721835468280404126886231438, −15.87004349967626453869943764370, −14.4959174032034389015612356691, −13.70671384186247945763768449442, −13.07651200150108210506590740917, −12.110175539832623564791900219116, −11.4962394086758655125585311042, −10.648425059750945792139140125335, −9.702371181441959774541531576844, −8.396920781086312385774406544225, −7.99855176938073915835801347801, −6.866948518496860382106786114708, −5.73978241194643010016354396631, −5.25436337934858772438988853877, −4.38670709239280119153536010860, −2.900342857647643669587095701863, −1.38116762238238609877955350013, −1.03350912204553819271675135023,
1.17862425971535528610269549999, 2.46125614666238779839206906956, 3.48914537901513768167891924687, 4.81018992223219793112417372878, 5.211958805820074368581505732842, 6.364614313019398152840945918275, 7.13892987728069699230197332429, 8.110100481984171534660551204982, 9.51453525222394704219250609233, 9.98953743515066638281275274351, 10.86773487887885666732272633818, 11.65102172382314225025506235147, 12.20029159299224876960781824152, 13.54216976783287194339733599350, 14.460999832946764126105390637120, 15.10937919676788576189666675318, 15.72506670896459947929405585043, 16.95006838769310898287833489735, 17.50570310757847668107198924684, 18.25877995517541821588652076636, 18.74737147528649066424768870878, 20.23708050643598097112960575495, 20.903437371758170872855641982555, 21.59279305880165448494896504669, 22.28753518444136295809228561238