| L(s) = 1 | + (0.235 − 0.971i)5-s + (−0.327 + 0.945i)7-s + (−0.0475 + 0.998i)11-s + (−0.327 − 0.945i)13-s + (0.415 + 0.909i)17-s + (0.415 − 0.909i)19-s + (−0.888 − 0.458i)25-s + (−0.580 + 0.814i)29-s + (−0.928 − 0.371i)31-s + (0.841 + 0.540i)35-s + (0.959 + 0.281i)37-s + (−0.235 + 0.971i)41-s + (0.928 − 0.371i)43-s + (−0.5 − 0.866i)47-s + (−0.786 − 0.618i)49-s + ⋯ |
| L(s) = 1 | + (0.235 − 0.971i)5-s + (−0.327 + 0.945i)7-s + (−0.0475 + 0.998i)11-s + (−0.327 − 0.945i)13-s + (0.415 + 0.909i)17-s + (0.415 − 0.909i)19-s + (−0.888 − 0.458i)25-s + (−0.580 + 0.814i)29-s + (−0.928 − 0.371i)31-s + (0.841 + 0.540i)35-s + (0.959 + 0.281i)37-s + (−0.235 + 0.971i)41-s + (0.928 − 0.371i)43-s + (−0.5 − 0.866i)47-s + (−0.786 − 0.618i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.619 - 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.619 - 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4001358963 - 0.8253382393i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4001358963 - 0.8253382393i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9350521189 - 0.1156279487i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9350521189 - 0.1156279487i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (0.235 - 0.971i)T \) |
| 7 | \( 1 + (-0.327 + 0.945i)T \) |
| 11 | \( 1 + (-0.0475 + 0.998i)T \) |
| 13 | \( 1 + (-0.327 - 0.945i)T \) |
| 17 | \( 1 + (0.415 + 0.909i)T \) |
| 19 | \( 1 + (0.415 - 0.909i)T \) |
| 29 | \( 1 + (-0.580 + 0.814i)T \) |
| 31 | \( 1 + (-0.928 - 0.371i)T \) |
| 37 | \( 1 + (0.959 + 0.281i)T \) |
| 41 | \( 1 + (-0.235 + 0.971i)T \) |
| 43 | \( 1 + (0.928 - 0.371i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.654 - 0.755i)T \) |
| 59 | \( 1 + (-0.327 - 0.945i)T \) |
| 61 | \( 1 + (0.786 - 0.618i)T \) |
| 67 | \( 1 + (0.0475 + 0.998i)T \) |
| 71 | \( 1 + (0.841 - 0.540i)T \) |
| 73 | \( 1 + (0.415 - 0.909i)T \) |
| 79 | \( 1 + (0.981 + 0.189i)T \) |
| 83 | \( 1 + (-0.235 - 0.971i)T \) |
| 89 | \( 1 + (-0.142 + 0.989i)T \) |
| 97 | \( 1 + (-0.723 - 0.690i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.37951271800460541406937844127, −21.45263499220199646609860505252, −20.77754661674467593765187144385, −19.75329983795503784631662505067, −18.93299254953587778637427104692, −18.48128663035582538144823865651, −17.415521162230168596936367245, −16.54316561162634564841369420071, −16.05375896665264682518365890630, −14.7659765905022839402247669036, −13.99576803546680430493775355488, −13.72154100314538923059441168350, −12.47651654484956072367808636594, −11.37424276222817945710346300347, −10.8787345723563579913963937521, −9.861547925299408520003734284625, −9.289589058408011312272193448713, −7.83405186336393570896383941937, −7.242523289365197113073693362806, −6.34730985181650509573906283325, −5.527166541423955715741397267121, −4.130526209853923281011698169577, −3.39813469788025910177514468597, −2.4224092530852333318372772157, −1.09451477275455521069067291293,
0.21206738827590890392206635667, 1.549989256109399403285380506957, 2.48578254780025282355458594246, 3.65799803155595016373745636074, 4.93964720588280422428703042533, 5.41154301460369502025945321851, 6.42966899431695355128238489626, 7.63131776737502745773058751585, 8.418120898524093999189882915112, 9.39692791150460573100591186017, 9.837832482975082344752158321825, 11.069244068967442591633575952604, 12.148135379171990391352055123379, 12.76158630398251596708568185952, 13.18491347916957245405824039019, 14.644654643994402580706932282733, 15.21416544230198605128806567837, 16.03701062472360825985076231323, 16.900736419055913434079913361659, 17.70702385838122023031165158119, 18.33227970963080345814145903048, 19.492966948674254403361553288170, 20.11088175807336569649345097825, 20.79107899321335000467668666208, 21.84754041731744848794490532177