| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s − i·8-s + (0.5 + 0.866i)9-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)12-s − i·13-s + (−0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s + (0.866 + 0.5i)18-s + (−0.5 − 0.866i)19-s − i·22-s + (0.5 − 0.866i)24-s + ⋯ |
| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s − i·8-s + (0.5 + 0.866i)9-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)12-s − i·13-s + (−0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s + (0.866 + 0.5i)18-s + (−0.5 − 0.866i)19-s − i·22-s + (0.5 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 805 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 805 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.039277779 - 1.570414875i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.039277779 - 1.570414875i\) |
| \(L(1)\) |
\(\approx\) |
\(2.194409132 - 0.6583293809i\) |
| \(L(1)\) |
\(\approx\) |
\(2.194409132 - 0.6583293809i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 - iT \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.866 - 0.5i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 - iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.55112405583281218564519198333, −21.50148668008161013925831691013, −20.7508951781446165856045335150, −20.27942650214855659521421393908, −19.17038256357541624468239838776, −18.49992269171374808365714601174, −17.361253448817803110835300674691, −16.65982372062319935181803831433, −15.67621352779217373670115820932, −14.79359916460945429221943834637, −14.29850837079183388878079627802, −13.65078086776397101708912703423, −12.50062322581027709495968092518, −12.26114769488177997289116741809, −11.135706865162203717007368709227, −9.6897292593820276440310720320, −8.972265949949343903759789738585, −7.86227004352516132872442982293, −7.261689015205050699019399602825, −6.49225858000880910855078525655, −5.46842571053247718143591607971, −4.16299342296535817018021261988, −3.70080000761736411938145266551, −2.39828603421980123810190292122, −1.67615315384955461478588662875,
1.1534294368601825673364070647, 2.36188792563090551800235038388, 3.30927370880220119207494081440, 3.82309514798553200282777773084, 4.99232743113073931668299371685, 5.75089273034464121610470418406, 6.90989522264517095918090290118, 8.01421422616262542219572666150, 8.94467359133966871416522292827, 9.86427789082175202022745746030, 10.68128864386015318446469189696, 11.32933619544945940680911960075, 12.61203873598469625211294545262, 13.14162023067116035564252540088, 14.11682638770428596798007438502, 14.62957336160180215544182276649, 15.44371032090723106531595627347, 16.13949665440974934694415022415, 17.14122213241793236008036749095, 18.51033697231230183605740758593, 19.320884632163827206925960006213, 19.80113092532588267343713811478, 20.65834690676164545464257506813, 21.333431169300971433498564635690, 21.98226668512663887312032522798